首页> 外文期刊>Mathematical Problems in Engineering >Forecasting of Chinese E-Commerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive Neural Network, and a Combined ARIMA-NARNN Model
【24h】

Forecasting of Chinese E-Commerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive Neural Network, and a Combined ARIMA-NARNN Model

机译:中国电子商务销售额的预测:ARIMA,非线性自回归神经网络和ARIMA-NARNN组合模型的经验比较

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of e-commerce (EC) and shopping online, accurate and efficient forecasting of e-commerce sales (ECS) is very important for making strategies for purchasing and inventory of EC enterprises. Affected by many factors, ECS volume range varies greatly and has both linear and nonlinear characteristics. Three forecast models of ECS, autoregressive integrated moving average (ARIMA), nonlinear autoregressive neural network (NARNN), and ARIMA-NARNN, are used to verify the forecasting efficiency of the methods. Several time series of ECS from China's Jingdong Corporation are selected as experimental data. The result shows that the ARIMA-NARNN model is more effective than ARIMA and NARNN models in forecasting ECS. The analysis found that the ARIMA-NARNN model combines the linear fitting of ARIMA and the nonlinear mapping of NARNN, so it shows better prediction performance than the ARIMA and NARNN methods.
机译:随着电子商务(EC)和在线购物的快速发展,准确有效地预测电子商务销售(ECS)对于制定EC企业的采购和库存策略非常重要。受多种因素影响,ECS的体积范围变化很​​大,具有线性和非线性特征。使用三种ECS预测模型,自回归综合移动平均值(ARIMA),非线性自回归神经网络(NARNN)和ARIMA-NARNN来验证方法的预测效率。选择了来自中国京东公司的多个ECS时间序列作为实验数据。结果表明,在预测ECS方面,ARIMA-NARNN模型比ARIMA和NARNN模型更有效。分析发现,ARIMA-NARNN模型将ARIMA的线性拟合和NARNN的非线性映射结合在一起,因此与ARIMA和NARNN方法相比,它具有更好的预测性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第15期|6924960.1-6924960.12|共12页
  • 作者

    Li Maobin; Ji Shouwen; Liu Gang;

  • 作者单位

    Beijing Jiaotong Univ MOE Key Lab Urban Transportat Complex Syst Theory Beijing 100044 Peoples R China;

    Beijing Jingdong Century Trading Co Ltd Beijing 100044 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号