首页> 外文期刊>Mathematical Problems in Engineering >Numerical Solution of a Class of Nonlinear Partial Differential Equations by Using Barycentric Interpolation Collocation Method
【24h】

Numerical Solution of a Class of Nonlinear Partial Differential Equations by Using Barycentric Interpolation Collocation Method

机译:重心插值配置法求解一类非线性偏微分方程的数值解

获取原文
获取原文并翻译 | 示例

摘要

Partial differential equations (PDEs) are widely used in mechanics, control processes, ecological and economic systems, chemical cycling systems, and epidemiology. Although there are some numerical methods for solving PDEs, simple and efficient methods have always been the direction that scholars strive to pursue. Based on this problem, we give the meshless barycentric interpolation collocation method (MBICM) for solving a class of PDEs. Four numerical experiments are carried out and compared with other methods; the accuracy of the numerical solution obtained by the present method is obviously improved.
机译:偏微分方程(PDE)广泛用于力学,控制过程,生态和经济系统,化学循环系统和流行病学。尽管存在一些求解PDE的数值方法,但简单有效的方法一直是学者努力追求的方向。基于这个问题,我们给出了无网格的重心插值配置方法(MBICM)来解决一类PDE。进行了四个数值实验,并与其他方法进行了比较。通过本方法得到的数值解的精度明显提高。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第17期|7260346.1-7260346.10|共10页
  • 作者单位

    Jining Normal Univ, Inst Econ & Management, Jining 021000, Inner Mongolia, Peoples R China;

    Inner Mongolia Univ Technol, Dept Math, Hohhot 010051, Peoples R China;

    Jining Normal Univ, Inst Econ & Management, Jining 021000, Inner Mongolia, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号