首页> 外文期刊>Mathematical Problems in Engineering >Multisource Data-Driven Modeling Method for Estimation of Intercity Trip Distribution
【24h】

Multisource Data-Driven Modeling Method for Estimation of Intercity Trip Distribution

机译:城际出行分布估计的多源数据驱动建模方法

获取原文
获取原文并翻译 | 示例

摘要

Traditional intercity trip distribution modeling methods are merely derived from household travel survey due to its limitation to partial or inaccurate information. With the development of information construction, reliable historical data can be easily collected from different sources, such as sensor and statistical data. In this study, a data-driven method based on Poisson distribution theory is proposed to estimate intercity trip distribution using sensor data and various city features. A Poisson model, which reveals the deep correlation between city feature variables and trip distribution, is initially formulated. The L1-norm approach and the coordinate descent algorithm are then adopted in selecting related features and estimating model parameters, respectively, to reduce the complexity of the model. Finally, a k-means clustering method is used to analyze the latent correlation between city features and improve the availability of the model. The methodology is tested on a realistic dataset containing the highway trips of 17 cities in Shandong Province, China. The city feature variables have 66 dimensions, including economic index and population indicator. In comparison with traditional gravity model, which regards population as the most important factor affecting city attraction, our result shows that one of the core positive factors is the economic feature, such as gross regional domestic product. Moreover, the dimension of city features in the developed model decreases from 66 to 13 dimensions. The model developed in this study performs well in replicating the observed intercity origin-destination matrix.
机译:传统的城际旅行分布建模方法由于其对部分或不准确信息的限制而仅源自家庭旅行调查。随着信息建设的发展,可以轻松地从不同来源收集可靠的历史数据,例如传感器和统计数据。在这项研究中,提出了一种基于泊松分布理论的数据驱动方法,以利用传感器数据和各种城市特征来估计城市间旅行的分布。首先建立了一个Poisson模型,该模型揭示了城市特征变量与出行分布之间的深层相关性。然后分别采用L1-norm方法和坐标下降算法来选择相关特征和估计模型参数,以降低模型的复杂性。最后,使用k均值聚类方法分析城市特征之间的潜在相关性并提高模型的可用性。该方法已在包含中国山东省17个城市的公路行驶量的真实数据集上进行了测试。城市特征变量具有66个维度,包括经济指数和人口指标。与传统的重力模型相比,传统的重力模型将人口作为影响城市吸引力的最重要因素,我们的结果表明,核心积极因素之一是经济特征,例如区域国内生产总值。此外,在开发的模型中,城市特征的尺寸从66降低到13。本研究开发的模型在复制观察到的城际起源-目的地矩阵方面表现良好。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第7期|8948676.1-8948676.11|共11页
  • 作者单位

    Beihang Univ, Coll Software, Beijing 100044, Peoples R China;

    Beihang Univ, Coll Software, Beijing 100044, Peoples R China;

    Beihang Univ, State Key Lab Software Dev Environm, Beijing 100044, Peoples R China;

    Beihang Univ, State Key Lab Software Dev Environm, Beijing 100044, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号