首页> 外文期刊>Mathematical notes >On the Rate of Approximation of Closed Jordan Curves by Lemniscates
【24h】

On the Rate of Approximation of Closed Jordan Curves by Lemniscates

机译:Lemniscates逼近闭合Jordan曲线的速率

获取原文
获取原文并翻译 | 示例

摘要

As proved by Hilbert, it is, in principle, possible to construct an arbitrarily close approximation in the Hausdorff metric to an arbitrary closed Jordan curve Γ in the complex plane {z} by lemniscates generated by polynomials P(z). In the present paper, we obtain quantitative upper bounds for the least deviations H_n(Γ) (in this metric) from the curve Γ of the lemniscates generated by polynomials of a given degree n in terms of the moduli of continuity of the conformal mapping of the exterior of Γ onto the exterior of the unit circle, of the mapping inverse to it, and of the Green function with a pole at infinity for the exterior of Γ. For the case in which the curve Γ is analytic, we prove that H_n(Γ) = O(q~n), 0 ≤ q = q(Γ) < 1, n → ∞.
机译:如希尔伯特(Hilbert)所证明的那样,原则上可以通过多项式P(z)生成的引理,在Hausdorff度量中构造任意近似于复平面{z}中的闭合乔丹曲线Γ的近似逼近。在本文中,我们从给定阶数n的多项式生成的多项式的曲线Γ得出最小偏差H_n(Γ)的定量上限(在此度量中) Γ的外部到单位圆的外部,与其相反的映射以及Green函数,其中Γ的外部具有无穷大的极点。对于曲线Γ是解析的情况,我们证明H_n(Γ)= O(q〜n),0≤q = q(Γ)<1,n→∞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号