首页> 外文期刊>Mathematical notes >Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators
【24h】

Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators

机译:Digamma函数的值的有理逼近和分母的猜想

获取原文
获取原文并翻译 | 示例

摘要

We explicitly construct rational approximations to the numbers ln(b) - ψ(a + 1), where ψ is the logarithmic derivative of the Euler gamma function. We prove formulas expressing the numerators and the denominators of the approximations in terms of hypergeometrie sums. This generalizes the Aptekarev construction of rational approximations for the Kuler constant γ. As a consequence, we obtain rational approximations for the numbers π/2 ± γ. The proposed construction is compared with rational Rivoal approximations for the numbers γ + In(b). We verify assumptions put forward by Rivoal on the denominators of rational approximations to the numbers γ + In(6) and on the general denominators of simultaneous approximations to the numbers γ and ζ(2) - γ~2.
机译:我们显式构造数字ln(b)-ψ(a + 1)的有理逼近,其中ψ是Euler伽玛函数的对数导数。我们证明了用超几何和表示近似值的分子和分母的公式。这概括了Kuler常数γ有理逼近的Aptekarev构造。结果,我们获得了π/ 2±γ的有理近似值。将拟议的构造与有理数Rivoal逼近相比较,以得出γ+ In(b)数。我们验证了Rivoal对数字γ+ In(6)有理逼近的分母以及对数字γ和ζ(2)-γ〜2的同时逼近的一般分母提出的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号