首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Cattaneo-Christov heat flux model for three-dimensional flow of a viscoelastic fluid on an exponentially stretching surface
【24h】

Cattaneo-Christov heat flux model for three-dimensional flow of a viscoelastic fluid on an exponentially stretching surface

机译:Cattaneo-Christov在指数拉伸表面上的粘弹性液体三维流动的热量模型

获取原文
获取原文并翻译 | 示例

摘要

In this article, we explore the three-dimensional boundary-layer flow over an exponentially stretching surface in two parallel ways. Constitutive equations of a second-grade fluid are used. Instead of classical Fourier's law, Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. The resulting partial differential equations are reduced into ordinary differential equations by similarity transformations. Homotopy Analysis Method (HAM) is employed to solve the non-linear problem. Physical impact of emerging parameters on the momentum and thermal boundary-layer thickness are studied.
机译:在本文中,我们以两种平行方式探讨了三维边界层在指数拉伸表面上流动。使用二级流体的组成型方程。代替古典的傅立叶定律,Cattaneo-Christov热量模型用于配制能量方程。该模型可以预测热弛豫时间对边界层的影响。通过相似性变换将所得到的部分微分方程减少到常微分方程中。使用同型分析方法(火腿)来解决非线性问题。研究了新出现参数对动量和热边界层厚度的物理影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号