首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Multi-model predictive control of Hammerstein-Wiener systems based on balanced multi-model partition
【24h】

Multi-model predictive control of Hammerstein-Wiener systems based on balanced multi-model partition

机译:基于平衡多模型划分的Hammerstein-Wiener系统的多模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

Model analysis of Hammerstein-Wiener systems has been made, and it is found that the included angle is applicable to such systems to measure the non-linearity. Then, a dichotomy gridding algorithm is proposed based on the included angle. Supporting by the gridding algorithm, a balanced multi-model partition method is put forward to partition a Hammerstein-Wiener system into a set of local linear models. For each linear model, a linear model predictive controller (MPC) is designed. After that, a multi-MPC is composed of the linear MPCs via soft switching. Thus, a complex non-linear control problem is transformed into a set of linear control problems, which simplifies the original control problem and improves the control performance. Two non-linear systems are built into Hammerstein-Wiener models and investigated using the proposed methods. Simulations demonstrate that the proposed gridding and partition methods are effective, and the resulted multi-MPC controller has satisfactory performance in both set-point tracking and disturbance rejection control.
机译:进行了Hammerstein-Wiener系统的模型分析,发现夹角适用于此类系统以测量非线性。然后,基于夹角提出了二分网格算法。在网格化算法的支持下,提出了一种平衡的多模型划分方法,将Hammerstein-Wiener系统划分为一组局部线性模型。对于每个线性模型,设计一个线性模型预测控制器(MPC)。之后,通过线性切换由线性MPC组成一个多MPC。因此,将复杂的非线性控制问题转化为一组线性控制问题,从而简化了原始控制问题并提高了控制性能。 Hammerstein-Wiener模型中内置了两个非线性系统,并使用提出的方法进行了研究。仿真表明,本文提出的网格划分方法是有效的,所得到的多MPC控制器在设定点跟踪和干扰抑制控制方面均具有令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号