首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Bond graph model-based system mode identification and mode-dependent fault thresholds for hybrid systems
【24h】

Bond graph model-based system mode identification and mode-dependent fault thresholds for hybrid systems

机译:基于键合图模型的混合系统系统模式识别和模式相关故障阈值

获取原文
获取原文并翻译 | 示例

摘要

Hybrid system models exploit the modelling abstraction that fast state transitions take place instantaneously so that they encompass discrete events and the continuous time behaviour for the while of a system mode. If a system is in a certain mode, e.g. two rigid bodies stick together, then residuals of analytical redundancy relations (ARRs) within certain small bounds indicate that the system is healthy. An unobserved mode change, however, invalidates the current model for the dynamic behaviour. As a result, ARR residuals may exceed current thresholds indicating faults in system components that have not happened. The paper shows that ARR residuals derived from a bond graph cannot only serve as fault indicators but may also be used for bond graph model-based system mode identification. ARR residuals are numerically computed in an offline simulation by coupling a bond graph of the faulty system to a non-faulty system bond graph through residual sinks. In real-time simulation, the faulty system model is to be replaced by measurements from the real system. As parameter values are uncertain, it is important to determine adaptive ARR thresholds that, given uncertain parameters, allow to decide whether the dynamic behaviour in a current system mode is the one of the healthy system so that false alarms or overlooking of true faults can be avoided. The paper shows how incremental bond graphs can be used to determine adaptive mode-dependent ARR thresholds for switched linear time-invariant systems with uncertain parameters in order to support robust fault detection. Bond graph-based hybrid system mode identification as well as the determination of adaptive fault thresholds is illustrated by application to a power electronic system easy to survey. Some simulation results have been analytically validated.
机译:混合系统模型利用建模抽象概念,即快速状态转换是瞬时发生的,因此它们涵盖了系统模式时的离散事件和连续时间行为。如果系统处于特定模式,例如两个刚体粘在一起,那么在某些小范围内的分析冗余关系(ARR)残差表明该系统是健康的。但是,未观察到的模式更改会使当前模型的动态行为无效。结果,ARR残差可能会超过当前阈值,表明系统组件中尚未发生的故障。本文表明,从键合图得出的ARR残差不仅可以用作故障指标,还可以用于基于键合图模型的系统模式识别。通过将故障系统的键图通过残差耦合到非故障系统键图,可以在脱机模拟中通过数值计算ARR残差。在实时仿真中,故障系统模型将由实际系统的测量值代替。由于参数值不确定,因此重要的是要确定自适应ARR阈值,在给定不确定参数的情况下,该阈值可以决定当前系统模式下的动态行为是否是正常系统之一,从而可以使错误警报或忽略实际故障。避免。本文展示了如何使用增量键图来确定参数不确定的切换线性时不变系统的自适应模式相关ARR阈值,以支持鲁棒的故障检测。通过对易于调查的电力电子系统的应用,说明了基于键合图的混合系统模式识别以及自适应故障阈值的确定。一些仿真结果已经过分析验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号