首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Lagrangian and Hamiltonian formulation for infinite-dimensional systems - a variational point of view
【24h】

Lagrangian and Hamiltonian formulation for infinite-dimensional systems - a variational point of view

机译:无限维系统的拉格朗日和哈密顿公式-变观点

获取原文
获取原文并翻译 | 示例

摘要

In this article we use the Lagrange multiplier method, which is well-known in constrained optimization theory, to derive several different Hamiltonian counterparts to Lagrangian systems described by partial differential equations in a variational setting. The main observation is the fact that unconstrained, infinite-dimensional systems can be formulated as constrained variational problems, where the constraints are used to hide some or all derivative variables appearing in the Lagrangian. Depending on the chosen derivative variables that are affected by this approach, different representations of the same dynamical system can be achieved. These theoretical investigations will be applied to a demonstrative example from mechanics.
机译:在本文中,我们使用在约束优化理论中众所周知的拉格朗日乘数法,推导了变分环境中偏微分方程描述的拉格朗日系统的几种不同的汉密尔顿对应物。主要观察到的事实是,无约束的无穷维系统可以公式化为受约束的变分问题,其中约束用于隐藏拉格朗日中出现的一些或所有导数。根据受此方法影响的所选导数变量,可以实现同一动力学系统的不同表示。这些理论研究将应用于力学上的一个示例性例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号