首页> 外文期刊>Materials Science and Engineering. B, Solid-State Materials for Advanced Technology >Growth kinetic and doping of Si and SiGe epi layers on fullsheet substrates
【24h】

Growth kinetic and doping of Si and SiGe epi layers on fullsheet substrates

机译:全片基板上Si和SiGe外延层的生长动力学和掺杂

获取原文
获取原文并翻译 | 示例

摘要

As the critical size of MOSFET becomes smaller and smaller and complexity of architectures increases, selective and non-selective depositions of in situ doped film become extremely attractive for the realisation of new devices architectures like, elevated sources/drains in CMOS or extrinsic bases in bipolar. Epitaxial layers were grown in a 200 mm industrial single wafer reactor. Firstly, we investigate the boron incorporation in Si/SiGe non-selective epitaxy based on SiH_4/GeH_4/B_2H_6/H_2 chemistry at low temperature (550-750℃). The influence of temperature and germanium content on the boron incorporation is presented. Sheet conductivity deduced from four probes measurements varied from 1.8 x 10~4 to 1.9 x 10~5 S m~(-1) as deposited. We demonstrate that both the boron incorporation and the film conductivity are improved in SiGe compared to Si, In addition, combining the dose of substitutional boron atoms, deduced from the X-ray diffraction shift, with the resistivity results, we could infer a significant enhancement of the hole mobility in SiGe compared to Si (at least for moderate doping levels around 1 x 10~(20) h/cm~3). In a second part, the high boron-doping of selective Si epitaxy based on SiH_2Cl_2/B_2H_6/HCl/H_2 chemistry at reduced pressure (< 20 Torr) and at low temperature (700-850℃) is examined. Boron incorporation is observed to decrease with increasing HCl flow and the electrical doping level to increase with temperature. We also report a strong increase of the growth rate with the dopant flow (six times higher for B_2H_6/DCS = 0.01) that will be discussed. Epitaxies that are fully selective against Si_3 N_4 have been demonstrated with conductivity as high as 7.8 x 10~4 Sm~(-1).
机译:随着MOSFET的临界尺寸变得越来越小以及架构的复杂性增加,原位掺杂膜的选择性和非选择性沉积对于实现新的器件架构极为有吸引力,例如CMOS中的源极/漏极增大或双极中的非本征基极。外延层在200mm工业单晶片反应器中生长。首先,我们基于低温(550-750℃)下的SiH_4 / GeH_4 / B_2H_6 / H_2化学性质研究了硼在Si / SiGe非选择性外延中的掺入情况。提出了温度和锗含量对硼掺入的影响。由四个探针测量得出的薄板电导率在沉积时从1.8 x 10〜4到1.9 x 10〜5 S m〜(-1)不等。我们证明与Si相比,SiGe中的硼掺入和膜电导率均得到改善,此外,结合X射线衍射位移推导的取代硼原子的剂量与电阻率结果,我们可以推断出明显的增强Si的空穴迁移率与Si相比(至少在1 x 10〜(20)h / cm〜3左右的中等掺杂水平下)。在第二部分中,研究了基于SiH_2Cl_2 / B_2H_6 / HCl / H_2的化学反应在减压(<20 Torr)和低温(700-850℃)下对选择性Si外延的高硼掺杂。观察到硼的掺入随着HCl流量的增加而减少,电掺杂水平随温度的增加而增加。我们还报告说,随着掺杂剂流量的增加,增长率将大大提高(B_2H_6 / DCS = 0.01时,增长六倍)。已经证明对Si_3 N_4具有完全选择性的外延层的电导率高达7.8 x 10〜4 Sm〜(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号