...
首页> 外文期刊>Materials Science and Engineering >Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu
【24h】

Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu

机译:纳米狭窄的蠕变行为及其与纳米Cu的活化体积和应变率敏感性的关系

获取原文
获取原文并翻译 | 示例

摘要

The creep behavior of nanocrystalline Cu with an average grain size of 25 nm was investigated by nanoindentation test at room temperature. Using the creep strain rate versus creep stress data obtained at different loading rates, the activation volume and strain rate sensitivity were determined obtained by cooperating the continuous stiffness measurement (CSM) technique. The results showed that the activation volume first increases and then decreases, and the strain rate sensitivity first decreases and then increases with increasing the creep stress. The experimental activation volume and strain rate sensitivity versus the creep stress data exhibit very good agreements with the theoretical values calculated by the previous models, respectively. The analysis based on the data of the activation volume and strain rate sensitivity revealed that at lower stress, the grain boundary activities dominate and lead to the lower creep strain rates; at higher stress, the dislocation activities dominate and lead to the higher creep strain rates. The analysis based on the data of the nanoindentation test also revealed that the use of the CSM technique can lead to the continuous creep strain rate versus creep stress data, which allows us to uncover the creep mechanisms over a wide range of the creep stress from the initial to steady stage.
机译:通过室温测试研究了平均晶粒尺寸为25nm的纳米晶Cu的蠕变行为。使用以不同的装载速率获得的蠕变应变速率与蠕变应力数据,通过协同连续刚度测量(CSM)技术来确定活化体积和应变速率灵敏度。结果表明,活化体积首先增加,然后降低,应变速率灵敏度首先降低,然后随着蠕变应力增加而增加。实验激活体积和应变速率灵敏度与蠕变应力数据分别与先前模型计算的理论值表现出非常好的协议。基于激活体积的数据和应变速率灵敏度的分析显示,在较低的应力下,晶界活动占据主导地位并导致较低的蠕变应变速率;在压力较高,脱位活动占主导地位并导致较高的蠕变应变率。基于纳米压宁测试的数据的分析还显示使用CSM技术可以导致连续蠕变应变率与蠕变应力数据,这使我们可以在广泛的蠕变压力范围内揭开蠕变机制初始到稳定阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号