首页> 外文期刊>Materials Science and Engineering >Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu
【24h】

Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu

机译:纳米铜纳米压痕蠕变行为及其与活化体积和应变速率敏感性的关系

获取原文
获取原文并翻译 | 示例
           

摘要

The creep behavior of nanocrystalline Cu with an average grain size of 25 nm was investigated by nanoindentation test at room temperature. Using the creep strain rate versus creep stress data obtained at different loading rates, the activation volume and strain rate sensitivity were determined obtained by cooperating the continuous stiffness measurement (CSM) technique. The results showed that the activation volume first increases and then decreases, and the strain rate sensitivity first decreases and then increases with increasing the creep stress. The experimental activation volume and strain rate sensitivity versus the creep stress data exhibit very good agreements with the theoretical values calculated by the previous models, respectively. The analysis based on the data of the activation volume and strain rate sensitivity revealed that at lower stress, the grain boundary activities dominate and lead to the lower creep strain rates; at higher stress, the dislocation activities dominate and lead to the higher creep strain rates. The analysis based on the data of the nanoindentation test also revealed that the use of the CSM technique can lead to the continuous creep strain rate versus creep stress data, which allows us to uncover the creep mechanisms over a wide range of the creep stress from the initial to steady stage.
机译:在室温下通过纳米压痕试验研究了平均晶粒尺寸为25 nm的纳米晶Cu的蠕变行为。使用在不同加载速率下获得的蠕变应变率与蠕变应力数据,通过协作连续刚度测量(CSM)技术获得了激活体积和应变率灵敏度。结果表明,随着蠕变应力的增加,活化体积先增大然后减小,应变速率灵敏度先减小然后增大。实验激活体积和应变率灵敏度与蠕变应力数据的关系分别与先前模型计算的理论值非常吻合。基于激活量和应变率敏感性数据的分析表明,在较低的应力下,晶界活动起主导作用,并导致较低的蠕变应变率。在较高的应力下,位错活动起主导作用,并导致较高的蠕变应变率。基于纳米压痕测试数据的分析还表明,使用CSM技术可以得出连续的蠕变应变率与蠕变应力的数据,这使我们能够在较大的蠕变应力范围内揭示蠕变机理。初期到稳定阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号