首页> 外文期刊>Materials Science and Engineering >Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe-30Mn-(6-x)Si-xAl TRIP/TWIP alloys
【24h】

Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe-30Mn-(6-x)Si-xAl TRIP/TWIP alloys

机译:合金成分对Fe-30Mn-(6-x)Si-xAl TRIP / TWIP合金低周疲劳性能和组织的影响

获取原文
获取原文并翻译 | 示例

摘要

The change in low-cycle fatigue (LCF) properties and deformation microstructure due to the alteration of aluminum and silicon contents was studied in relation with the tensile properties in Fe-30Mn-(6-x)Si-xAl (x=0, 1, 2, 3, 4, 5, 6 wt%) alloys, which are high-Mn austenitic TRIP/TWIP alloys. Austenite to ε-martensite transformation took place during LCF deformation in the TRIP alloys with x≤2 while mechanical twinning was not observed by electron-backscattering diffraction (EBSD) analysis in the TWIP alloys with x> 2 after LCF deformation. The fatigue resistance of the alloys was shown to be correlated with the tensile proof strength and the hardening rate. Superior fatigue life of 8 × 10~3 cycles at a total strain range △_ε=2% was found in the Fe-30Mn-4Si-2Al TRIP alloy with a low fraction of E-martensite, high tensile proof strength and low hardening rate at both tensile and fatigue deformations. On the other hand, a considerable decrease in the fatigue properties was observed in the alloys with decreasing proof strength and increasing hardening rate. Proof strength provided by the solid solution of Al and Si, represents the hampering of plastic deformation, and the hardening rate reflects the strain reversibility affected by the stacking fault energy (SFE) through the rate of austenite to martensite transformation in the TRIP alloys and the substructure formation in the TWIP alloys.
机译:研究了铝和硅含量的变化引起的低周疲劳(LCF)特性和变形微观结构的变化与Fe-30Mn-(6-x)Si-xAl(x = 0,1 ,2、3、4、5、6 wt%)合金,它们是高锰的奥氏体TRIP / TWIP合金。 x≤2的TRIP合金在LCF变形过程中发生了奥氏体向ε马氏体的转变,而xCF> 2的TWIP合金在x≤2的情况下,未通过电子背散射衍射(EBSD)分析观察到机械孪晶。合金的耐疲劳性与拉伸强度和硬化速率相关。 Fe-30Mn-4Si-2Al TRIP合金中的马氏体含量低,抗拉强度高,硬化率低,在总应变范围△_ε= 2%时,疲劳寿命为8×10〜3个循环,使用寿命长在拉伸和疲劳变形下。另一方面,在合金中观察到疲劳性能的显着降低,同时极限强度降低和硬化速率提高。 Al和Si固溶体提供的屈服强度代表了塑性变形的阻碍,而硬化速率则反映了TRIP合金中奥氏体向马氏体转变的速率,以及由堆垛层错能(SFE)影响的应变可逆性。 TWIP合金中的亚结构形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号