首页> 外文期刊>Machine Vision and Applications >3D level set method for blastomere segmentation of preimplantation embryos in fluorescence microscopy images
【24h】

3D level set method for blastomere segmentation of preimplantation embryos in fluorescence microscopy images

机译:荧光显微镜图像中植入前胚胎卵裂球分割的3D水平集方法

获取原文
获取原文并翻译 | 示例

摘要

Detailed and accurate characteristics of preimplantation embryos are fundamental for a deep understanding of their development. Recent studies indicate that various geometric features of cells, such as size, shape, volume, and position play a significant role in embryo growth. However, a quantitative assessment of these characteristics first needs a segmentation of the individual cells. The manual separation and labeling of cells is extremely inefficient, and an automated approach is highly desirable. This paper presents an automatic method for early stage embryo segmentation into its constituent cells and membranes using three-dimensional (3D) data. The input data consist of two Z-stacks of fluorescence microscope images containing nuclei and membranes. The method uses a 3D level set segmentation algorithm. Its evaluation is based on a dataset composed of 20 mouse embryos, each with 4-32 blastomeres. Segmentation accuracy was evaluated by calculating F-scores with ground truth obtained by manually labeling desired regions. We also compared output of our method with the one acquired with a watershed algorithm. The proposed approach was able to achieve more than 90% accuracy for embryos with 4 and 8 cells, while for embryos with higher number of cells it was lower, reaching 75% for 32-cell embryo.
机译:植入前胚胎的详细和准确特征是深入了解其发育的基础。最近的研究表明,细胞的各种几何特征,例如大小,形状,体积和位置在胚胎生长中起着重要作用。但是,这些特征的定量评估首先需要对单个细胞进行细分。手动分离和标记细胞效率极低,非常需要一种自动化方法。本文提出了一种利用三维(3D)数据将早期胚胎分割成其组成细胞和膜的自动方法。输入数据由包含原子核和膜的荧光显微镜图像的两个Z堆栈组成。该方法使用3D水平集分割算法。其评估基于一个由20个小鼠胚胎组成的数据集,每个小鼠胚胎具有4-32个卵裂球。通过计算F分数来评估分割精度,该分数由通过手动标记所需区域获得的地面真实性来实现。我们还将我们方法的输出结果与通过分水岭算法获得的结果进行了比较。对于具有4和8个细胞的胚胎,所提出的方法能够达到90%以上的准确度,而对于具有更多细胞的胚胎,其准确率要低得多,对于32个细胞的胚胎则达到75%。

著录项

  • 来源
    《Machine Vision and Applications》 |2018年第1期|125-134|共10页
  • 作者单位

    Yagi Laboratory, Department of Intelligent Media, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

    Yagi Laboratory, Department of Intelligent Media, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

    Yagi Laboratory, Department of Intelligent Media, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

    Yagi Laboratory, Department of Intelligent Media, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Embryo; Fluorescence microscopy; Segmentation; Image processing; 3D; Level set;

    机译:胚胎;荧光显微镜分割;图像处理;3D;水平集;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号