首页> 外文期刊>Machine Learning >Combining instance-based learning and logistic regression for multilabel classification
【24h】

Combining instance-based learning and logistic regression for multilabel classification

机译:结合基于实例的学习和逻辑回归进行多标签分类

获取原文
获取原文并翻译 | 示例

摘要

Multilabel classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Recent research has shown that, just like for conventional classification, instance-based learning algorithms relying on the nearest neighbor estimation principle can be used quite successfully in this context. However, since hitherto existing algorithms do not take correlations and interdependencies between labels into account, their potential has not yet been fully exploited. In this paper, we propose a new approach to multilabel classification, which is based on a framework that unifies instance-based learning and logistic regression, comprising both methods as special cases. This approach allows one to capture interdependencies between labels and, moreover, to combine model-based and similarity-based inference for multilabel classification. As will be shown by experimental studies, our approach is able to improve predictive accuracy in terms of several evaluation criteria for multilabel prediction.
机译:多标签分类是常规分类的扩展,其中单个实例可以与多个标签关联。最近的研究表明,就像常规分类一样,在这种情况下可以非常成功地使用依赖于最近邻估计原理的基于实例的学习算法。然而,由于迄今为止的现有算法并未考虑标签之间的相关性和相互依赖性,因此尚未充分利用它们的潜力。在本文中,我们提出了一种新的多标签分类方法,该方法基于一个框架,该框架将基于实例的学习和逻辑回归结合在一起,包括这两种方法作为特殊情况。这种方法可以捕获标签之间的相互依赖性,并且可以将基于模型的推理和基于相似性的推理相结合以进行多标签分类。如实验研究所示,我们的方法能够根据多种标记物预测的评估标准来提高预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号