首页> 外文期刊>Machine Learning >Efficient max-margin multi-label classification with applications to zero-shot learning
【24h】

Efficient max-margin multi-label classification with applications to zero-shot learning

机译:高效的最大利润率多标签分类,可应用于零镜头学习

获取原文
获取原文并翻译 | 示例

摘要

The goal in multi-label classification is to tag a data point with the subset of relevant labels from a pre-specified set. Given a set of L labels, a data point can be tagged with any of the 2~L possible subsets. The main challenge therefore lies in optimising over this exponentially large label space subject to label correlations. Our objective, in this paper, is to design efficient algorithms for multi-label classification when the labels are densely correlated. In particular, we are interested in the zero-shot learning scenario where the label correlations on the training set might be significantly different from those on the test set. We propose a max-margin formulation where we model prior label correlations but do not incorporate pairwise label interaction terms in the prediction function. We show that the problem complexity can be reduced from exponential to linear while modelling dense pairwise prior label correlations. By incorporating relevant correlation priors we can handle mismatches between the training and test set statistics. Our proposed formulation generalises the effective 1-vs-AH method and we provide a principled interpretation of the 1-vs-All technique. We develop efficient optimisation algorithms for our proposed formulation. We adapt the Sequential Minimal Optimisation (SMO) algorithm to multi-label classification and show that, with some book-keeping, we can reduce the training time from being super-quadratic to almost linear in the number of labels. Furthermore, by effectively re-utilizing the kernel cache and jointly optimising over all variables, we can be orders of magnitude faster than the competing state-of-the-art algorithms. We also design a specialised algorithm for linear kernels based on dual co-ordinate ascent with shrinkage that lets us effortlessly train on a million points with a hundred labels.
机译:多标签分类的目标是用预先指定的一组相关标签的子集标记数据点。给定一组L标签,可以使用2〜L个可能的子集中的任何一个来标记数据点。因此,主要挑战在于优化要经历标签相关性的指数大标签空间。在本文中,我们的目标是设计当标签紧密相关时用于多标签分类的有效算法。特别是,我们对零镜头学习场景感兴趣,在该场景中,训练集上的标签相关性可能与测试集上的标签相关性显着不同。我们提出了最大利润率的公式,其中我们对先前的标签相关性进行建模,但不将成对标签相互作用项纳入预测函数中。我们表明,在对密集的成对先验标签相关性进行建模时,可以将问题的复杂度从指数降低为线性。通过合并相关的相关先验,我们可以处理训练和测试集统计数据之间的不匹配。我们提出的公式概括了有效的1-vs-AH方法,并提供了1-vs-All技术的原理性解释。我们为提出的配方开发了高效的优化算法。我们将顺序最小优化算法(SMO)应用于多标签分类,并表明,通过进行一些记账,我们可以将标签数量从超级二次训练减少到几乎线性训练的时间。此外,通过有效地重新利用内核缓存并共同优化所有变量,我们可以比竞争的最新算法快几个数量级。我们还设计了一种基于双坐标上升和缩小的线性内核专用算法,该算法使我们可以轻松地训练带有一百个标签的一百万个点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号