首页> 外文期刊>Computer Vision, IET >Zero-shot multi-label learning via label factorisation
【24h】

Zero-shot multi-label learning via label factorisation

机译:通过标签分解实现零镜头多标签学习

获取原文
获取原文并翻译 | 示例

摘要

This study considers the zero-shot learning problem under the multi-label setting where each test sample is associated with multiple labels that are unseen in training data. The authors propose a novel learning framework based on label factorisation for this problem. Specifically, the authors' framework takes three key issues into consideration and addresses them in a unified way. The first is knowledge transfer that utilises information from seen classes to build recognition models for unseen classes. The second is label correlation which means that labels which have different semantics may co-occur frequently. This is an important issue in multi-label learning. The authors propose to learn a shared latent space by label factorisation and use the label semantics as the decoding function, which can address both issues. The third is the predictability which requires the learned latent space to be strongly related to the visual features. It is guaranteed by incorporating a regression model into the learning framework. The authors derive two specific formulations from the general framework and propose the corresponding learning algorithms. The authors conducted extensive experiments on three multi-label data sets. The results demonstrated the effectiveness.
机译:这项研究考虑了在多标签设置下的零射学习问题,其中每个测试样本都与训练数据中看不到的多个标签相关联。作者提出了一种基于标签分解的新颖学习框架。具体来说,作者的框架考虑了三个关键问题,并以统一的方式解决了这些问题。首先是知识转移,它利用来自可见班级的信息来建立针对未见班级的识别模型。第二个是标签相关性,这意味着具有不同语义的标签可能会经常同时出现。这是多标签学习中的重要问题。作者建议通过标签分解来学习共享的潜在空间,并使用标签语义作为解码功能,这可以解决这两个问题。第三是可预测性,它要求学习的潜伏空间与视觉特征密切相关。通过将回归模型合并到学习框架中,可以保证这一点。作者从通用框架中得出了两个具体的公式,并提出了相应的学习算法。作者对三个多标签数据集进行了广泛的实验。结果证明了有效性。

著录项

  • 来源
    《Computer Vision, IET》 |2019年第2期|117-124|共8页
  • 作者单位

    Zhejiang Future Technol Inst Jiaxing, Jiaxing, Zhejiang, Peoples R China;

    Tsinghua Univ, Sch Software, Beijing, Peoples R China;

    Tsinghua Univ, Sch Software, Beijing, Peoples R China;

    Univ Lancaster, Sch Comp & Commun, Lancaster, England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号