首页> 外文期刊>Machine Learning >Calibration and regret bounds for order-preserving surrogate losses in learning to rank
【24h】

Calibration and regret bounds for order-preserving surrogate losses in learning to rank

机译:标定和后悔界限,用于在学习排名时保留订单的替代损失

获取原文
获取原文并翻译 | 示例

摘要

Learning to rank is usually reduced to learning to score individual objects, leaving the "ranking" step to a sorting algorithm. In that context, the surrogate loss used for training the scoring function needs to behave well with respect to the target performance measure which only sees the final ranking. A characterization of such a good behavior is the notion of calibration, which guarantees that minimizing (over the set of measurable functions) the surrogate risk allows us to maximize the true performance. In this paper, we consider the family of order-preserving (OP) losses which includes popular surrogate losses for ranking such as the squared error and pairwise losses. We show that they are calibrated with performance measures like the Discounted Cumulative Gain (DCG), but also that they are not calibrated with respect to the widely used Mean Average Precision and Expected Reciprocal Rank. We also derive, for some widely used OP losses, quantitative surrogate regret bounds with respect to several DCG-like evaluation measures.
机译:学习排名通常被简化为学习对单个对象进行评分,而将“排名”步骤留给排序算法。在这种情况下,用于训练评分功能的替代损失需要相对于仅查看最终排名的目标绩效指标表现良好。校准的概念就是这种良好行为的特征,它保证了最小化(在可测量功能集上)替代风险可以使我们最大程度地发挥真实性能。在本文中,我们考虑了订单保留(OP)损失家族,其中包括用于排名的流行替代损失,例如平方误差和成对损失。我们显示,它们已使用诸如折扣累积增益(DCG)之类的性能指标进行了校准,但它们并未针对广泛使用的平均平均精度和预期倒数排名进行过校准。对于一些广泛使用的OP损失,我们还得出了关于几种类似DCG的评估方法的量化替代后悔界限。

著录项

  • 来源
    《Machine Learning》 |2013年第3期|227-260|共34页
  • 作者单位

    Department of Computer Science (Laboratoire d'Informatique de Paris 6), University Pierre et Marie Curie, Paris, France;

    Department of Computer Science (Laboratoire d'Informatique de Paris 6), University Pierre et Marie Curie, Paris, France,Heudiasyc, Universite Technologique de Compiegne, Paris, France;

    Department of Computer Science (Laboratoire d'Informatique de Paris 6), University Pierre et Marie Curie, Paris, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Learning to rank; Calibration; Surrogate regret bounds;

    机译:学习排名;校准;替代后悔界限;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号