首页> 外文期刊>Machine Learning >An aggregate and iterative disaggregate algorithm with proven optimality in machine learning
【24h】

An aggregate and iterative disaggregate algorithm with proven optimality in machine learning

机译:机器学习中具有最优最优性的集合和迭代分解算法

获取原文
获取原文并翻译 | 示例

摘要

We propose a clustering-based iterative algorithm to solve certain optimization problems in machine learning, where we start the algorithm by aggregating the original data, solving the problem on aggregated data, and then in subsequent steps gradually disaggregate the aggregated data. We apply the algorithm to common machine learning problems such as the least absolute deviation regression problem, support vector machines, and semi-supervised support vector machines. We derive model-specific data aggregation and disaggregation procedures. We also show optimality, convergence, and the optimality gap of the approximated solution in each iteration. A computational study is provided.
机译:我们提出了一种基于聚类的迭代算法来解决机器学习中的某些优化问题,在该算法中,我们先对原始数据进行汇总,然后对汇总数据进行求解,然后在后续步骤中逐步分解汇总数据。我们将该算法应用于常见的机器学习问题,例如最小绝对偏差回归问题,支持向量机和半监督支持向量机。我们导出特定于模型的数据聚合和分解过程。我们还显示了每次迭代中逼近解的最优性,收敛性和最优性差距。提供了计算研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号