首页> 外文期刊>Machine Learning >Surrogate regret bounds for generalized classification performance metrics
【24h】

Surrogate regret bounds for generalized classification performance metrics

机译:替代广义分类绩效指标的后悔界限

获取原文
获取原文并翻译 | 示例

摘要

We consider optimization of generalized performance metrics for binary classification by means of surrogate losses. We focus on a class of metrics, which are linear-fractional functions of the false positive and false negative rates (examples of which include -measure, Jaccard similarity coefficient, AM measure, and many others). Our analysis concerns the following two-step procedure. First, a real-valued function f is learned by minimizing a surrogate loss for binary classification on the training sample. It is assumed that the surrogate loss is a strongly proper composite loss function (examples of which include logistic loss, squared-error loss, exponential loss, etc.). Then, given f, a threshold is tuned on a separate validation sample, by direct optimization of the target performance metric. We show that the regret of the resulting classifier (obtained from thresholding f on ) measured with respect to the target metric is upperbounded by the regret of f measured with respect to the surrogate loss. We also extend our results to cover multilabel classification and provide regret bounds for micro- and macro-averaging measures. Our findings are further analyzed in a computational study on both synthetic and real data sets.
机译:我们考虑通过代理损失对二进制分类的广义性能指标进行优化。我们专注于一类度量,它们是误报率和误报率的线性分数函数(其示例包括-measure,Jaccard相似系数,AM度量等)。我们的分析涉及以下两步过程。首先,通过最小化训练样本二进制分类的替代损失来学习实值函数f。假定代理损失是一个非常合适的复合损失函数(其示例包括逻辑损失,平方误差损失,指数损失等)。然后,在给定f的情况下,可以通过直接优化目标效果指标来对单独的验证样本进行调整。我们显示,相对于目标指标测得的结果分类器(从阈值f on获得)的后悔比针对代理损失测得的f的后悔高。我们还将结果扩展到涵盖多标签分类,并为微观和宏观平均度量提供遗憾。我们的发现在综合和真实数据集的计算研究中得到了进一步分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号