首页> 外文期刊>Machine Learning >Active evaluation of ranking functions based on graded relevance
【24h】

Active evaluation of ranking functions based on graded relevance

机译:基于分级相关性的主动评估排名功能

获取原文
获取原文并翻译 | 示例

摘要

Evaluating the quality of ranking functions is a core task in web search and other information retrieval domains. Because query distributions and item relevance change over time, ranking models often cannot be evaluated accurately on held-out training data. Instead, considerable effort is spent on manually labeling the relevance of query results for test queries in order to track ranking performance. We address the problem of estimating ranking performance as accurately as possible on a fixed labeling budget. Estimates are based on a set of most informative test queries selected by an active sampling distribution. Query labeling costs depend on the number of result items as well as item-specific attributes such as document length. We derive cost-optimal sampling distributions for the commonly used performance measures Discounted Cumulative Gain and Expected Reciprocal Rank. Experiments on web search engine data illustrate significant reductions in labeling costs.
机译:评估排名功能的质量是Web搜索和其他信息检索领域的核心任务。由于查询分布和项目相关性会随时间变化,因此排名模型通常无法根据保留的培训数据进行准确评估。取而代之的是,花费大量的精力来手动标记测试结果的查询结果的相关性,以跟踪排名效果。我们解决了在固定标签预算下尽可能准确地评估排名效果的问题。估算是基于一组由活动抽样分布选择的最有用的测试查询。查询标签成本取决于结果项的数量以及项特定的属性(如文档长度)。我们得出了常用绩效指标折现累积收益和预期倒数排名的成本最优抽样分布。网络搜索引擎数据上的实验表明,标签成本显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号