首页> 外文期刊>Lifetime Data Analysis >A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models
【24h】

A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models

机译:一个混合地标Aalen-Johansen估计,用于部分非马尔可夫多状态模型的过渡概率

获取原文
获取原文并翻译 | 示例

摘要

Multi-state models are increasingly being used to model complex epidemiological and clinical outcomes over time. It is common to assume that the models are Markov, but the assumption can often be unrealistic. The Markov assumption is seldomly checked and violations can lead to biased estimation of many parameters of interest. This is a well known problem for the standard Aalen-Johansen estimator of transition probabilities and several alternative estimators, not relying on the Markov assumption, have been suggested. A particularly simple approach known as landmarking have resulted in the Landmark-Aalen-Johansen estimator. Since landmarking is a stratification method a disadvantage of landmarking is data reduction, leading to a loss of power. This is problematic for "less traveled" transitions, and undesirable when such transitions indeed exhibit Markov behaviour. Introducing the concept of partially non-Markov multi-state models, we suggest a hybrid landmark Aalen-Johansen estimator for transition probabilities. We also show how non-Markov transitions can be identified using a testing procedure. The proposed estimator is a compromise between regular Aalen-Johansen and landmark estimation, using transition specific landmarking, and can drastically improve statistical power. We show that the proposed estimator is consistent, but that the traditional variance estimator can underestimate the variance of both the hybrid and landmark estimator. Bootstrapping is therefore recommended. The methods are compared in a simulation study and in a real data application using registry data to model individual transitions for a birth cohort of 184 951 Norwegian men between states of sick leave, disability, education, work and unemployment.
机译:多状态模型越来越多地用于模拟复杂的流行病学和临床结果。通常假设模型是马尔可夫,但假设通常可以是不现实的。马尔可夫假设很少检查,违规可能导致偏见的估计许多感兴趣的参数。这是过渡概率标准Aalen-Johansen估计的众所周知的问题,并提出了几种替代估计,而不是依赖于马尔可夫的假设。一种特别简单的方法,被称为地标成为地标-Aalen-Johansen估计。由于地标是分层方法,因此地标的缺点是数据减少,导致电力损失。对于“较少的旅行”过渡是有问题的,并且当这种转变确实表现出马尔可夫行为时不希望。介绍部分非马尔可夫多国模型的概念,我们建议一个用于过渡概率的混合地标Aalen-Johansen估计。我们还展示了如何使用测试过程来识别非马尔可夫转换。建议的估计人是常规Aalen-Johansen和地标估计之间的妥协,使用过渡特定的地标,并且可以大大提高统计功率。我们表明所提出的估算器是一致的,但传统的方差估计器可以低估混合动力和地标估计器的方差。因此建议使用自举。这些方法在仿真研究中和使用注册数据申请的实际数据应用中,以模拟生病假,残疾,教育,工作和失业状态的184 951名挪威人的出生队列的单独转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号