首页> 外文会议>Combining soft computing and statistical methods in data analysis >Recent Developments in Censored, Non-Markov Multi-State Models
【24h】

Recent Developments in Censored, Non-Markov Multi-State Models

机译:删失的非马尔可夫多状态模型的最新发展

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric estimation of transition probabilities for a censored multi-state model is traditionally performed under a Markov assumption. However, this assumption may (and will) fail in some applications, leading to the inconsistency of the time-honoured Aalen-Johansen estimator. In such a case, alternative (non-Markov) estimators are needed. In this work we review some recent developments in this area. We also review the key problem of testing if a given (censored) multi-state model is Markov, giving modern ideas for the construction of an omnibus test statistic.
机译:传统上,在马尔可夫假设条件下对经过审查的多状态模型进行转移概率的非参数估计。但是,此假设在某些应用中可能会(并且将失败),从而导致历史悠久的Aalen-Johansen估计量的不一致。在这种情况下,需要替代的(非马尔可夫)估计量。在这项工作中,我们回顾了该领域的一些最新进展。我们还回顾了测试的关键问题,如果给定的(经过审查的)多状态模型是Markov,则为构建综合测试统计量提供了现代思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号