首页> 外文期刊>Lifetime Data Analysis >Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis
【24h】

Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis

机译:随机优先级的贝叶斯半参数建模及其在流行病学和生存分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a prior probability model for two distributions that are ordered according to a stochastic precedence constraint, a weaker restriction than the more commonly utilized stochastic order constraint. The modeling approach is based on structured Dirichlet process mixtures of normal distributions. Full inference for func-tionals of the stochastic precedence constrained mixture distributions is obtained through a Markov chain Monte Carlo posterior simulation method. A motivating application involves study of the discriminatory ability of continuous diagnostic tests in epidemiologic research. Here, stochastic precedence provides a natural restriction for the distributions of test scores corresponding to the non-infected and infected groups. Inference under the model is illustrated with data from a diagnostic test for Johne's disease in dairy cattle. We also apply the methodology to the comparison of survival distributions associated with two distinct conditions, and illustrate with analysis of data on survival time after bone marrow transplantation for treatment of leukemia.
机译:我们为根据随机优先权约束排序的两个分布提出了先验概率模型,该约束比较常用的随机次序约束弱。建模方法基于正态分布的结构化Dirichlet过程混合。通过马尔可夫链蒙特卡洛后验模拟方法,可以完全推断出随机优先约束混合物的功能。一个激励性的应用涉及在流行病学研究中对连续诊断测试的区分能力的研究。在这里,随机优先级为与未感染和感染组相对应的测试分数分布提供了自然的限制。该模型下的推论用来自奶牛约翰氏病诊断测试的数据说明。我们还将这种方法应用于与两种不同情况相关的存活分布的比较,并通过对骨髓移植治疗白血病后的存活时间进行数据分析来说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号