首页> 外文期刊>Lifetime Data Analysis >A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
【24h】

A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects

机译:用于纵向测量和竞争风险生存数据的通用联合模型,具有异构随机效应

获取原文
获取原文并翻译 | 示例

摘要

This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance-covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.
机译:本文研究了用于纵向测量和竞争风险生存数据的通用联合模型。该模型包括用于纵向结果的线性混合效应子模型,用于竞争风险生存数据的比例成因特定危害脆弱性子模型以及用于多元潜在随机变量的方差-协方差矩阵的回归子模型基于改进的Cholesky分解的效果。该模型提供了一种有用的方法来调整由于纵向结果丢失而导致的不可忽略的缺失数据,可以通过信息检查和间断测量的时间相关协变量对生存结果进行分析,以及纵向和生存结果的联合分析。与先前研究的联合模型不同,我们的模型允许使用异构随机协方差矩阵。它还提供了一个框架来评估现有联合模型的齐次协方差假设。贝叶斯MCMC过程被开发用于参数估计和推断。使用模拟研究其性能和常客性。一个真实的数据示例用于说明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号