首页> 外文期刊>Lifetime Data Analysis >Marginal semiparametric multivariate accelerated failure time model with generalized estimating equations
【24h】

Marginal semiparametric multivariate accelerated failure time model with generalized estimating equations

机译:带有广义估计方程的边际半参数多元加速失效时间模型

获取原文
获取原文并翻译 | 示例

摘要

The semiparametric accelerated failure time (AFT) model is not as widely used as the Cox relative risk model due to computational difficulties. Recent developments in least squares estimation and induced smoothing estimating equations for censored data provide promising tools to make the AFT models more attractive in practice. For multivariate AFT models, we propose a generalized estimating equations (GEE) approach, extending the GEE to censored data. The consistency of the regression coefficient estimator is robust to misspecification of working covariance, and the efficiency is higher when the working covariance structure is closer to the truth. The marginal error distributions and regression coefficients are allowed to be unique for each margin or partially shared across margins as needed. The initial estimator is a rank-based estimator with Gehan's weight, but obtained from an induced smoothing approach with computational ease. The resulting estimator is consistent and asymptotically normal, with variance estimated through a multiplier resampling method. In a large scale simulation study, our estimator was up to three times as efficient as the estimateor that ignores the within-cluster dependence, especially when the within-cluster dependence was strong. The methods were applied to the bivariate failure times data from a diabetic retinopathy study.
机译:由于计算困难,半参数加速失败时间(AFT)模型没有像Cox相对风险模型那样广泛使用。最小二乘估计和用于估计数据的诱导平滑估计方程的最新发展提供了使AFT模型在实践中更具吸引力的有前途的工具。对于多变量AFT模型,我们提出了一种广义估计方程(GEE)方法,将GEE扩展到审查数据。回归系数估计器的一致性对于工作协方差的错误指定具有较强的鲁棒性,并且当工作协方差结构更接近真实时效率更高。边际误差分布和回归系数对于每个边际都是唯一的,或者根据需要在边际中部分共享。初始估计量是具有Gehan权重的基于秩的估计量,但是从具有计算简便性的诱导平滑方法获得的。所得的估计量是一致的,并且是渐近正态的,方差是通过乘数重采样方法估计的。在大规模仿真研究中,我们的估计器的效率是忽略集群内部相关性的估计器的三倍,特别是当集群内部相关性很强时。将该方法应用于糖尿病性视网膜病研究的双变量失败时间数据。

著录项

  • 来源
    《Lifetime Data Analysis》 |2014年第4期|599-618|共20页
  • 作者单位

    Department of Mathematics and Statistics, University of Minnesota, Duluth, Duluth, MN, USA;

    Department of Applied Statistics, Yonsei University, Seoul, Korea;

    Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA;

    Department of Statistics, University of Connecticut, Storrs, CT, USA,Center for Public Health and Health Policy Research, University of Connecticut Health Center, East Hartford, CT, USA,Center for Environmental Sciences & Engineering, University of Connecticut, Storrs, CT, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Buckley-James estimator; Efficiency; Induced smoothing; Least squares; Multivariate survival;

    机译:Buckley-James估算器;效率;诱导平滑;最小二乘;多变量生存;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号