首页> 外文期刊>Learning Technologies, IEEE Transactions on >Group Optimization to Maximize Peer Assessment Accuracy Using Item Response Theory and Integer Programming
【24h】

Group Optimization to Maximize Peer Assessment Accuracy Using Item Response Theory and Integer Programming

机译:使用项目响应理论和整数编程来最大限度地提高对等评估精度的组优化

获取原文
获取原文并翻译 | 示例

摘要

With the wide spread large-scale e-learning environments such as MOOCs, peer assessment has been popularly used to measure the learner ability. When the number of learners increases, peer assessment is often conducted by dividing learners into multiple groups to reduce the learner's assessment workload. However, in such cases, the peer assessment accuracy depends on the method of forming groups. To resolve that difficulty, this study proposes a group formation method to maximize peer assessment accuracy using item response theory and integer programming. Experimental results, however, have demonstrated that the method does not present sufficiently higher accuracy than a random group formation method does. Therefore, this study further proposes an external rater assignment method that assigns a few outside-group raters to each learner after groups are formed using the proposed group formation method. Through results of simulation and actual data experiments, this study demonstrates that the proposed external rater assignment can substantially improve peer assessment accuracy.
机译:随着诸如MOOCS等大型电子学习环境,同行评估一直普遍地用于衡量学习者能力。当学习者人数增加时,通常通过将学习者分成多个组来减少学习者的评估工作量来进行对等评估。然而,在这种情况下,对等评估的准确性取决于形成组的方法。为了解决这个问题,本研究提出了一种使用项目响应理论和整数编程来最大化对等评估准确性的组形成方法。然而,实验结果表明,该方法不具有比无规组形成方法的准确性足够高的精度。因此,本研究进一步提出了一种外部评估方法,其在使用所提出的组形成方法形成组之后将少数外部组评级分配给每个学习者。通过模拟和实际数据实验的结果,本研究表明,所提出的外部评估分配可以大大提高对等评估准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号