机译:基于LSTM考虑准周周期的滚动轴承弱故障诊断方法
Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;
Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;
Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;
Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;
Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;
Weak fault feature extraction; Intelligent fault diagnosis; Rolling bearings; Temporal feature; Noise conditions;
机译:基于可变形的CNN-DLSTM转移学习方法,用于多个工作条件下滚动轴承的故障诊断
机译:一种基于自适应匹配追求的新的K型奇异值分解方法及其在滚动轴承弱故障的故障诊断中的应用
机译:基于稀疏分解和广泛学习网络的滚动元件轴承故障诊断
机译:基于稀疏表示和经验小波变换的滚动轴承弱故障诊断新方法
机译:滚动轴承的故障检测,诊断和预测:频域方法和隐马尔可夫建模。
机译:基于辅助分类器生成对抗的故障诊断方法滚动轴承网络
机译:一种基于自适应匹配追求的新的K型奇异值分解方法及其在滚动轴承弱故障的故障诊断中的应用