首页> 外文期刊>Knowledge-Based Systems >A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity
【24h】

A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity

机译:基于LSTM考虑准周周期的滚动轴承弱故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Because the fault characteristic frequencies of a rolling bearing are submerged in strong noise when it fails early, the fault feature in the original signal is relatively weak to allow the diagnosis of the bearing. Consequently, the method to extract a weak fault feature is becoming a challenging research topic in fault diagnosis. Traditional diagnostic networks are typically trained by the time series or the frequency spectrum of the acquired discrete signal fragment, whereas the connection of the local fragments (quasi-periodicity) is neglected, resulting in low diagnostic accuracy for the bearing under strong noise conditions. To solve this problem, a novel weak fault feature extraction and diagnosis method, composed of two parts, is proposed in this paper. The first part is a multi-channel continuous wavelet transform (MCCWT), by which the original temporal signals can be more easily transformed into a new representation with several channels and fewer network parameter requirements than those required by the traditional methods. The second part is a convolution-feature-based recurrent neural network (CFRNN) that is based on a traditional recurrent neural network (RNN). In the latter, a recurrent unit combining several residual blocks and a long short term memory (LSTM) block is proposed to mine the temporal features and the local vibration characteristics simultaneously. The efficiency of the proposed diagnosis method is validated respectively by the datasets collected by simulating fault bearings with strong noise and using real fault bearings containing faults at an early stage. (C) 2021 Elsevier B.V. All rights reserved.
机译:由于滚动轴承的故障特性频率在早期失败时浸没在强烈的噪声中,因此原始信号中的故障特征相对较弱,以允许轴承的诊断。因此,提取弱故障特征的方法正在成为故障诊断的具有挑战性的研究课题。传统的诊断网络通常是由所获取的离散信号片段的时间序列或频谱训练,而局部片段(准周周期)的连接被忽略,导致轴承在强噪声条件下的低诊断精度。为了解决这个问题,本文提出了一种新颖的弱故障特征提取和诊断方法,由两部分组成。第一部分是多通道连续小波变换(MCCWT),通过该多通道连续小波变换(MCCWT),通过该多通道连续小波变换(MCCWT)可以更容易地转换为具有多个通道和更少网络参数要求的新表示,而不是传统方法所需的新表示。第二部分是基于卷积特征的复发性神经网络(CFRNN),其基于传统的经常性神经网络(RNN)。在后者中,提出了一种复制单元,其组合多个残差块和长短期存储器(LSTM)块以同时挖掘时间特征和局部振动特性。所提出的诊断方法的效率分别通过模拟具有强噪声的故障轴承,并使用早期阶段使用故障的实际故障轴承收集的数据集进行验证。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第14期|107413.1-107413.15|共15页
  • 作者单位

    Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing 28 Xianning West Rd Xian 710049 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Weak fault feature extraction; Intelligent fault diagnosis; Rolling bearings; Temporal feature; Noise conditions;

    机译:弱故障特征提取;智能故障诊断;滚动轴承;时间特征;噪音条件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号