首页> 外文期刊>Knowledge-Based Systems >Unified Deep Learning approach for Efficient Intrusion Detection System using Integrated Spatial-Temporal Features
【24h】

Unified Deep Learning approach for Efficient Intrusion Detection System using Integrated Spatial-Temporal Features

机译:综合空间特征的高效入侵检测系统统一深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection systems (IDS) differentiate the malicious entries from the legitimate entries in network traffic data and helps in securing the networks. Deep learning algorithms have been greatly employed in the network security field for large scale data in modern cyberspace networks because of their ability to learn the deeply integrated features. However, learning both space and time aspects of system information are very challenging for any individual deep knowledge model. While Convolutional Neural Networks (CNN) effectively acquires the spatial aspects, the Long Short-Term Memory (LSTM) neural networks perform better for temporal features. Integrating the benefits of these models has the potential for improving the large scale IDS. In this paper, a high accurate IDS model is proposed by using a unified model of Optimized CNN (OCNN) and Hierarchical Multi-scale LSTM (HMLSTM) for effective extraction and learning of spatial-temporal features. The proposed IDS model performs the pre-processing, feature extraction through network training and network testing and final classification. In the OCNN-HMLSTM model, the Lion Swarm Optimization (LSO) is used to tune the hyper-parameters of CNN for the optimal configuration of learning spatial features. The HMLSTM learns the hierarchical relationships between the different features and extracts the time features. Lastly, the unified IDS approach utilizes the extracted spatial-temporal features for categorizing the network data. Tests are performed over public IDS datasets namely NSL-KDD, ISCX-IDS and UNSWNB15. Assessing the performance of OCNN-HMLSTM against the contemporary IDS methods, the proposed model performs better intrusion detection with high accuracy of above 90% with less false values and better classification coefficients. (C) 2021 Elsevier B.V. All rights reserved.
机译:入侵检测系统(IDS)将恶意条目与网络流量数据中的合法条目区分开来,并有助于保护网络。在现代网络空间网络中的大规模数据中,网络安全领域的深度学习算法已经很大程度上受雇于现代网络空间网络,因为他们能够学习深层集成功能。但是,学习系统信息的空间和时间方面对于任何个人深度知识模型都非常具有挑战性。虽然卷积神经网络(CNN)有效地获取空间方面,但长短期存储器(LSTM)神经网络对于时间特征而言更好。整合这些模型的好处具有改善大规模ID的潜力。在本文中,通过使用优化的CNN(OCNN)和分层多尺度LSTM(HMLSTM)的统一模型提出了一种高精度IDS模型,用于有效提取和学习空间时间特征。所提出的IDS模型通过网络培训和网络测试和最终分类执行预处理,功能提取。在OCNN-HMLSTM模型中,狮子群优化(LSO)用于调整CNN的超参数以获得学习空间特征的最佳配置。 HMLSTM了解不同功能之间的分层关系并提取时间功能。最后,统一IDS方法利用提取的空间 - 时间特征来分类网络数据。测试在公共IDS数据集上执行NSL-KDD,ISCX-ID和UNSWNB15。评估OCNN-HMLSTM对当代IDS方法的性能,所提出的模型具有更好的入侵检测,高精度高于90%,具有较少的假值和更好的分类系数。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号