首页> 外文期刊>Knowledge-Based Systems >Missing data imputation for traffic congestion data based on joint matrix factorization
【24h】

Missing data imputation for traffic congestion data based on joint matrix factorization

机译:基于联合矩阵分解的流量拥塞数据缺少数据载荷

获取原文
获取原文并翻译 | 示例

摘要

In reality, the missing of some traffic data is inevitable due to some unexpected errors, which not only affects traffic management but also hinders the development of traffic data research. In this paper, we propose a novel Imputation Model for traffic Congestion data, CIM for short, based on joint matrix factorization. CIM jointly models the characteristics of traffic congestion patterns, including periodicity, road similarity and temporal coherence to estimate the missing congestion values. In particular, we first construct an order-3 tensor based on the traffic congestion data. Then, we model the periodicity and road similarity via joint matrix factorization by exploiting the spatial and temporal information. Finally, we incorporate the local constraints into the process of matrix factorization to ensure the temporal coherence. Experimental results on a real traffic dataset indicate that modeling the three features of congestion patterns simultaneously is effective and CIM outperforms the baselines for the task of missing traffic data imputation. (C) 2021 Elsevier B.V. All rights reserved.
机译:实际上,由于一些意想不到的错误,一些交通数据的遗失是不可避免的,这不仅影响了流量管理,而且阻碍了交通数据研究的发展。在本文中,基于联合矩阵分解,我们提出了一种用于交通拥堵数据的新型载体模型,CIM,基于联合矩阵分解。 CIM共同模拟交通拥堵模式的特征,包括周期性,道路相似性和时间一致性,以估计缺失拥塞值。特别是,我们首先基于交通拥堵数据构造一个订单-3张量。然后,我们通过利用空间和时间信息来通过联合矩阵分解来模拟周期性和道路相似性。最后,我们将本地约束纳入矩阵分解过程,以确保时间相干。实验结果对实际交通数据集表示建模拥塞模式的三个特征同时是有效的,并且CIM优于缺少流量数据归档的任务的基线。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号