首页> 外文期刊>Knowledge-Based Systems >Technical analysis strategy optimization using a machine learning approach in stock market indices
【24h】

Technical analysis strategy optimization using a machine learning approach in stock market indices

机译:技术分析策略优化利用机器学习方法在股票市场指标中

获取原文
获取原文并翻译 | 示例

摘要

Within the area of stock market prediction, forecasting price values or movements is one of the most challenging issue. Because of this, the use of machine learning techniques in combination with technical analysis indicators is receiving more and more attention. In order to tackle this problem, in this paper we propose a hybrid approach to generate trading signals. To do so, our proposal consists of applying a technical indicator combined with a machine learning approach in order to produce a trading decision. The novelty of this approach lies in the simplicity and effectiveness of the hybrid rules as well as its possible extension to other technical indicators. In order to select the most suitable machine learning technique, we tested the performances of Linear Model (LM), Artificial Neural Network (ANN), Random Forests (RF) and Support Vector Regression (SVR). As technical strategies for trading, the Triple Exponential Moving Average (TEMA) and Moving Average Convergence/Divergence (MACD) were considered. We tested the resulting technique on daily trading data from three major indices: Ibex35 (IBEX), DAX and Dow Jones Industrial (DJI). Results achieved show that the addition of machine learning techniques to technical analysis strategies improves the trading signals and the competitiveness of the proposed trading rules. (C) 2021 Elsevier B.V. All rights reserved.
机译:在股票市场预测范围内,预测价格价值或运动是最具挑战性的问题之一。因此,使用机器学习技术与技术分析指标结合使用越来越多的关注。为了解决这个问题,在本文中,我们提出了一种混合方法来产生交易信号。为此,我们的提案包括将技术指标与机器学习方法相结合,以便产生交易决定。这种方法的新颖性在于混合规则的简单性和有效性以及其对其他技术指标的可能扩展。为了选择最合适的机器学习技术,我们测试了线性模型(LM),人工神经网络(ANN),随机林(RF)和支持向量回归(SVR)的性能。作为交易的技术策略,考虑了三重指数移动平均(TEMA)和移动平均收敛/发散(MACD)。我们从三个主要指数上进行了日常交易数据的结果技术:IBEX35(IBEX),DAX和DOW Jones Industrial(DJI)。结果达成了表明,对技术分析策略的增加机器学习技术可以提高交易信号和拟议的交易规则的竞争力。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号