首页> 外文期刊>Knowledge-Based Systems >AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions
【24h】

AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions

机译:来自信息管理视角的基于AI的移动背景推荐系统:进度和方向

获取原文
获取原文并翻译 | 示例

摘要

In the Artificial Intelligence (AI) field, and particularly within the area of Machine Learning (ML), recommender systems have attracted significant research attention. These systems attempt to alleviate the increasing information overload that users can experience in the current Big Data era, by providing personalized recommendations of items that they may find relevant. Besides, given the importance of mobile computing, these systems have evolved to consider also the dynamic context of the mobile users (location, time, weather conditions, etc.) to offer them more appropriate suggestions and information while on the move.In this paper, we provide an extensive survey of recent advances towards intelligent mobile Context-Aware Recommender Systems (mobile CARS) from an information management perspective, with an emphasis on mobile computing and AI techniques, along with an analysis of existing research gaps and future research directions. We focus on approaches that go beyond just considering the location of the user and exploit also other context information. In this study, we have identified that deep learning approaches are promising artificial intelligence models for mobile CARS. Additionally, in a near future, we expect a higher prominence of push-based recommendation solutions where at least part of the recommendation engine could be executed in the mobile devices, which could share data and tasks in a distributed way. (C) 2021 Elsevier B.V. All rights reserved.
机译:在人工智能(AI)领域,特别是在机器学习面积内(ML),推荐系统引起了显着的研究。这些系统试图通过提供他们可以找到相关的个性建议,减轻用户可以在当前大数据时代体验到当前大数据时代的越来越多的信息过载。此外,鉴于移动计算的重要性,这些系统也在推动了移动用户(位置,时间,天气条件等)的动态背景,以便在移动时提供更合适的建议和信息。本文,我们从信息管理角度对最近的智能移动背景推荐系统(移动车)进行了广泛的调查,重点是移动计算和AI技术,以及现有研究差距和未来的研究方向的分析。我们专注于超越的方法,即仅考虑用户的位置并利用其他上下文信息。在这项研究中,我们已经确定了深度学习方法是移动汽车的人工智能模式。此外,在不久的将来,我们预计对基于推荐的推荐解决方案的突出突出突出的突出性,其中至少部分推荐引擎可以在移动设备中执行,这可以以分布式方式共享数据和任务。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号