首页> 外文期刊>Knowledge-Based Systems >A survey about community detection over On-line Social and Heterogeneous Information Networks
【24h】

A survey about community detection over On-line Social and Heterogeneous Information Networks

机译:关于在线社会和异构信息网络的社区检测调查

获取原文
获取原文并翻译 | 示例

摘要

In modern Online Social Networks (OSNs), the need to detect users' communities based on their interests and social connections has became a more and more important challenge in literature. Community Detection supports and make more effective and efficient several Social Network Analysis (SNA) applications: the diffusion of a new idea or technologies can be maximized by identifying of people group interested about a given topic, the recommendation suggestion can be improved taking in account also how the social ties can be influenced the user chooses and the behaviors of people in the same communities, expert finding tasks could be more accurate if users are earlier subdivided into thematic groups, and so on. This paper presents a survey that provides a comprehensive and comparative study of all the different community detection techniques applicable to the various models proposed for OSNs. In particular, the most diffused approaches based on game theory, artificial intelligence and fuzzy strategies are detailed and compared, highlighting the related pros and cons. In addition, the problem of their applicability on the different OSN models is discussed, focusing on complex networks. Finally, the main open issues and challenges for the community detection problem are reported to address the futures work concerning this topic. (C) 2021 Elsevier B.V. All rights reserved.
机译:在现代在线社交网络(OSNS)中,需要根据他们的兴趣和社会联系检测用户的社区在文学中成为了更为重要的挑战。社区检测支持并制作更有效和更有效的若干社交网络分析(SNA)应用:通过识别对给定主题的人群的人群来最大化新想法或技术的扩散,建议建议也可以提高考虑到社交领带如何影响用户选择和同一社区中人们的行为,如果用户早期细分为主题组,则专家发现任务可能更准确,等等。本文提出了一项调查,提供了对适用于为OSNS所提出的各种模型的所有不同群体检测技术的全面和比较研究。特别是,基于博弈论,人工智能和模糊策略的最漫长的方法是详细的和比较,突出了相关的利弊。此外,讨论了它们对不同OSN模型的适用性的问题,专注于复杂的网络。最后,据报道,社区检测问题的主要开放问题和挑战是为了解决有关本主题的期货工作。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号