首页> 外文期刊>Knowledge-Based Systems >An anchor-free object detector with novel corner matching method
【24h】

An anchor-free object detector with novel corner matching method

机译:具有新型角匹配方法的无锚对象探测器

获取原文
获取原文并翻译 | 示例

摘要

Recently, remarkable object detection performance has been made by keypoint-based detectors with different keypoint matching strategies. However, the factors considered in most of keypoint matching strategies are not comprehensive, which greatly affects the detection results. In this paper, based on CornerNet we propose a novel anchor-free detector with a brand new keypoint matching method. In our approach, instead of using embedding of each corner to achieve keypoint matching like CornerNet, we predict a matching degree score for each predicted bounding box formed by corners. In order to train model to get accurate matching degree prediction results, we fully consider the location and geometric information of targets, calculating the distance between centers of predicted and ground truth bounding boxes as well as IoU value to decide which pair of top-left and bottom-right corners can form the right bounding box. Besides that, to relieve the problem that categorical predictions associated with corners are not always reliable, we set an additional classification score for each predicted bounding boxes to further promote final detection results. We apply our model on MS-COCO test - dev set for evaluation and the result shows that our method achieves an AP of 46.3 % at single-scale and 47.9% at multi-scale, which are competitive with other state-of-the-art models such as CentripetalNet and Corner Proposal Net (CPN). (C) 2021 Elsevier B.V. All rights reserved.
机译:最近,基于KeyPoint的检测器具有卓越的对象检测性能,具有不同的关键点匹配策略。然而,大多数关键点匹配策略中考虑的因素并不全面,这极大地影响了检测结果。在本文中,基于Cornernet,我们提出了一种具有全新的Keypoint匹配方法的新型锚定探测器。在我们的方法中,不是使用每个角落的嵌入来实现Conernet等关键点匹配,而是预测由角落形成的每个预测边界框的匹配度分数。为了培养模式以获得准确的匹配程度的预测结果,我们充分考虑的位置和目标的几何信息,计算欠条价值的预测和地面实况边界框中心之间的距离,以及决定哪些对左上角和右下角可以形成正确的边界框。除此之外,为了减轻与角落相关的分类预测并不总是可靠的问题,我们为每个预测的边界框设置了额外的分类评分,以进一步促进最终的检测结果。我们在MS-Coco Test - Dev设置上应用我们的模型进行评估,结果表明,我们的方法在单尺度下实现46.3%的AP,多尺度为47.9%,这与其他国家具有竞争力 - 艺术模型,如Centripetalnet和CARE提案网(CPN)。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号