首页> 外文期刊>Knowledge-Based Systems >An explainable deep vision system for animal classification and detection in trail-camera images with automatic post-deployment retraining
【24h】

An explainable deep vision system for animal classification and detection in trail-camera images with automatic post-deployment retraining

机译:一种可解释的Direct-Camera图像中的动物分类和检测的可解释的深视觉系统,自动部署后刷新

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an automated vision system for animal detection in trail-camera images taken from a field under the administration of the Texas Parks and Wildlife Department. As traditional wildlife counting techniques are intrusive and labor intensive to conduct, trail-camera imaging is a comparatively non-intrusive method for capturing wildlife activity. However, given the large volume of images produced from trail-cameras, manual analysis of the images remains time-consuming and inefficient. We implemented a two-stage deep convolutional neural network pipeline to find animal-containing images in the first stage and then process these images to detect birds in the second stage. The animal classification system classifies animal images with overall 93% sensitivity and 96% specificity. The bird detection system achieves better than 93% sensitivity, 92% specificity, and 68% average Intersection-over-Union rate. The entire pipeline processes an image in less than 0.5 s as opposed to an average 30 s for a human labeler. We also addressed post-deployment issues related to data drift for the animal classification system as image features vary with seasonal changes. This system utilizes an automatic retraining algorithm to detect data drift and update the system. We introduce a novel technique for detecting drifted images and triggering the retraining procedure. Two statistical experiments are also presented to explain the prediction behavior of the animal classification system. These experiments investigate the cues that steers the system towards a particular decision. Statistical hypothesis testing demonstrates that the presence of an animal in the input image significantly contributes to the system's decisions. (C) 2021 Elsevier B.V. All rights reserved.
机译:本文介绍了一种自动视觉系统,用于在德克萨斯州公园和野生动物部门的管理下的田径上拍摄的迹线相机图像中的动物检测。随着传统的野生动物计数技术是侵入性和劳动力的行为,Trail相机成像是捕获野生动物活动的相对非侵入性的方法。然而,鉴于由Trail-Cameras生产的大量图像,对图像的手动分析仍然耗时和效率低。我们实施了两阶段深卷积神经网络管道,以在第一阶段找到含有动物的图像,然后处理这些图像以检测第二阶段的鸟类。动物分类系统将总体93%敏感性和96%的特异性分类动物图像。鸟类检测系统达到93%的灵敏度,92%的特异性,平均交叉率为68%。整个流水线在小于0.5秒时处理图像,而不是平均30秒。我们还解决了与动物分类系统的数据漂移相关的部署后问题,因为图像功能随季节性变化而变化。该系统利用自动再培训算法来检测数据漂移并更新系统。我们介绍一种用于检测漂移图像并触发刷新过程的新技术。还提出了两个统计实验以解释动物分类系统的预测行为。这些实验调查了使系统朝向特定决定的提示。统计假设检测表明,输入图像中的动物的存在显着促进了系统的决定。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号