首页> 外文期刊>Knowledge-Based Systems >A deep learning model to effectively capture mutation information in multivariate time series prediction
【24h】

A deep learning model to effectively capture mutation information in multivariate time series prediction

机译:深度学习模型,有效地捕获多元时间序列预测中的突变信息

获取原文
获取原文并翻译 | 示例

摘要

In real-world complex multivariate time series data, mutation phenomena can significantly affect variation rules of target series. Meanwhile, there is no specific learning mechanism for the current deep learning model to capture mutation information in time series prediction. To this end, we propose a new deep learning model to capture mutation information between data. To capture the impact of mutation information on target series, a new function mapping is designed in the attention mechanism of the encoder to process the fusion of historical hidden state and cell state information; and an LSTM with transformation mechanism is proposed in the encoder to process the input information flow and learn the mutation information. In addition, an adaptive self-paced curriculum learning mechanism is designed to obtain mutation information that may be ignored among mini-batch samples. Finally, we define an objective function for multivariate time series prediction, which can extract the influence of temporal correlation information and mutation information within the data on target series. Our model can achieve superior performance than all baseline methods on five real-world datasets in different fields. (C) 2020 Elsevier B.V. All rights reserved.
机译:在现实世界复杂的多变量时间序列数据中,突变现象可以显着影响目标系列的变化规则。同时,目前深度学习模型没有具体的学习机制,以捕获时间序列预测中的突变信息。为此,我们提出了一个新的深度学习模型来捕获数据之间的突变信息。为了捕获突变信息对目标系列的影响,设计了一种新的函数映射,在编码器的注意机制中设计,以处理历史隐藏状态和单元格信息的融合;在编码器中提出了具有转换机制的LSTM,以处理输入信息流并学习突变信息。另外,设计自适应自定位课程学习机制以获得在迷你批次样本中可能被忽略的突变信息。最后,我们定义了用于多变量时间序列预测的目标函数,这可以提取目标系列数据中的时间相关信息和突变信息的影响。我们的模型可以在不同领域的五个真实数据集中的所有基线方法实现卓越的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号