首页> 外文期刊>Knowledge-Based Systems >Relational completion based non-negative matrix factorization for predicting metabolite-disease associations
【24h】

Relational completion based non-negative matrix factorization for predicting metabolite-disease associations

机译:基于关系完成的非负数矩阵分解,用于预测代谢疾病关联

获取原文
获取原文并翻译 | 示例

摘要

Metabolite, also known as intermediate metabolite, refers to substances produced or consumed in the metabolic processes. There are growing evidences that metabolites play an important role in the study of diseases. Due to the traditional experiments, it is time-consuming and luxurious to find the associations between metabolite and disease, we proposed a computational method, called RCNMF, to predict metabolite-disease associations. Firstly, we calculate the disease semantic similarity and the molecular fingerprint similarity of metabolite. The molecular fingerprint similarity of metabolite makes full use of the molecular structure internal information of metabolites. Then, we modify the original metabolite-disease associations matrix to replace some values of 0 with numbers between 0 and 1. Finally, we use the non-negative matrix factorization algorithm to predict potential metabolite-disease associations. We adopt the cross-validation mechanism to verify the performance of our proposed method. The AUC values of based the Leave-one-out cross validation measurement and the Five-fold cross validation measurement reach 0.9566 and 0.9430, respectively. What is more, case studies of common diseases also illustrate the effectiveness of our method. Thus, the superior experimental results show that our method can effectively predict the potential disease-metabolites associations. (C) 2020 Elsevier B.V. All rights reserved.
机译:代谢物,也称为中间代谢物,是指在代谢过程中产生或消耗的物质。代谢物在疾病研究中发挥着重要作用,越来越多的证据。由于传统的实验,发现代谢物和疾病之间的关联是耗时和豪华的,我们提出了一种称为RCNMF的计算方法,以预测代谢物疾病关联。首先,我们计算代谢物的疾病语义相似性和分子指纹相似性。代谢物的分子指纹相似度充分利用代谢物的分子结构内部信息。然后,我们修饰原始的代谢物 - 疾病关联矩阵以替换0的一些值0,在0和1.之间的数字。最后,我们使用非负矩阵分子化算法预测潜在的代谢病关联。我们采用交叉验证机制来验证我们提出的方法的表现。基于休假交叉验证测量的AUC值和五倍交叉验证测量分别达到0.9566和0.9430。更重要的是,常见疾病的案例研究也说明了我们方法的有效性。因此,优异的实验结果表明,我们的方法可以有效地预测潜在的疾病代谢物关联。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号