首页> 外文期刊>Neurocomputing >LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization
【24h】

LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization

机译:LDGRNMF:基于曲线图的LNCRNA - 疾病关联预测规则化非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Emerging evidence suggests that long non-coding RNAs (lncRNAs) play an important role in various biological processes and human diseases. Exploring the associations between lncRNAs and diseases can better understand the complex disease mechanisms. However, expensive and time-consuming for exploring by biological experiments, it is imperative to develop more accurate and efficient computational approaches to predicting lncRNA-disease associations. In this work, we develop a new computational approach to predict lncRNA-disease associations using graph regularized nonnegative matrix factorization (LDGRNMF), which considers disease-associated lncRNAs identification as recommendation system problem. More specifically, we calculate the similarity of disease based on Gaussian interaction profile kernel and disease semantic information, and calculate the similarity of lncRNA based on Gaussian interaction profile kernel. Secondly, the weighted K nearest known neighbor interaction profiles is applied to reconstruct lncRNA-disease association adjacency matrix. Finally, graph regularized nonnegative matrix factorization is exploited to predict the potential associations between lncRNAs and diseases. In the fivefold cross-validation experiments, LDGRNMF achieves AUC of 0.8985 which outperforms other compared methods. Moreover, in case studies for stomach cancer, breast cancer and lung cancer, 9, 8 and 6 of the top 10 candidate lncRNAs predicted by LDGRNMF are verified, respectively. Rigorous experimental results indicate that our method can be regarded as an effectively tool for predicting potential lncRNA-disease associations. (c) 2020 Elsevier B.V. All rights reserved.
机译:新兴的证据表明,长期的非编码RNA(LNCRNA)在各种生物过程和人类疾病中起重要作用。探索LNCRNA和疾病之间的关联可以更好地理解复杂的疾病机制。然而,通过生物实验探索昂贵且耗时,因此必须开发更准确和有效的计算方法以预测LNCRNA疾病关联。在这项工作中,我们开发了一种新的计算方法,以预测使用曲线图规则化的非负矩阵分解(LDGRNMF)来预测LNCRNA疾病关联,其认为病情相关的LNCRNA识别作为推荐系统问题。更具体地,我们基于高斯相互作用核和疾病语义信息计算疾病的相似性,并计算基于高斯交互型内核的LNCRNA的相似性。其次,施加加权k最近的邻居相互作用曲线来重建LNCRNA-疾病关联邻接矩阵。最后,利用图形正规化的非负矩阵分解以预测LNCRNA和疾病之间的潜在关联。在五倍交叉验证实验中,LDGRNMF实现了0.8985的AUC,其特点突出了其他比较方法。此外,在胃癌的情况下,分别验证了LDGRNMF预测的前10名候选LNCRNA的乳腺癌和肺癌,9,8和6。严谨的实验结果表明,我们的方法可以被认为是有效的工具,用于预测潜在的LNCRNA疾病关联。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第1期|236-245|共10页
  • 作者单位

    Yichun Univ Sch Math & Comp Sci Yichun 336000 Jiangxi Peoples R China;

    Chinese Acad Sci Xinjiang Tech Inst Phys & Chem Urumqi 830011 Peoples R China;

    Chinese Acad Sci Xinjiang Tech Inst Phys & Chem Urumqi 830011 Peoples R China|Zaozhuang Univ Coll Informat Sci & Engn Zaozhuang 277100 Peoples R China;

    Chinese Acad Sci Xinjiang Tech Inst Phys & Chem Urumqi 830011 Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LncRNA-disease associations; LncRNA-disease similarity; Nonnegative matrix factorization; Graph regularization;

    机译:LNCRNA疾病关联;LNCRNA疾病相似;非负矩阵分解;图规范化;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号