首页> 外文期刊>Knowledge-Based Systems >Random multi-scale kernel-based Bayesian distribution regression learning
【24h】

Random multi-scale kernel-based Bayesian distribution regression learning

机译:随机多规模内核的贝叶斯分布回归学习

获取原文
获取原文并翻译 | 示例

摘要

The effective embedding estimation of distribution and the construction of regression model with strong representation ability are two key problems of distribution regression. This paper proposes a random multi-scale kernel-based Bayesian distribution regression (RMK-BDR) learning framework. Vector-valued kernel mean embedding (KME) estimators with a same dimension which is chosen adaptively to the data are introduced in the first stage of distribution regression learning. Then, a linear combination of multi-scale Gaussian kernels with different scale parameters randomly sampled from a predefined distribution is used as the regression model. Sparsity priors are added on those linear combination weights. Under the Bayesian inference theory, a prediction distribution of the response variable is obtained. A series of experiment results verify the effectiveness of the proposed algorithm. (C) 2020 Elsevier B.V. All rights reserved.
机译:具有强大表示能力的分布和回归模型建设的有效嵌入估计是分布回归的两个关键问题。本文提出了一种随机的基于多级内核的贝叶斯分布回归(RMK-BDR)学习框架。矢量值内核平均嵌入(KME)估算具有相同维度的估计,其自适应地选择对数据选择的第一阶段。然后,使用从预定义分布中随机采样的不同比例参数的多尺度高斯核的线性组合用作回归模型。在那些线性组合重量上添加稀疏性前沿。在贝叶斯推理理论下,获得了响应变量的预测分布。一系列实验结果验证了所提出的算法的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号