首页> 外文期刊>Knowledge-Based Systems >A similarity-based two-view multiple instance learning method for classification
【24h】

A similarity-based two-view multiple instance learning method for classification

机译:基于相似性的两视图分类的多实例学习方法

获取原文
获取原文并翻译 | 示例

摘要

Multiple instance learning (MIL) has been proposed to classify the bag of instances. In practice, we may meet the problems which have more than one view data. For example, in the image classification, textual information is always used to describe the image, which can be considered as two-view data. In this paper, we propose a new similarity-based two-view multi-instance learning (STMIL) method that can incorporate two-view data into learning so as to improve classification accuracy of MIL. In order to obtain the predictive classifier, we first convert the proposed model into a convex optimization problem, and then propose a new alternative framework to solve the proposed method. We then analyze the convergence of the proposed STMIL method. The experiments have been conducted to compare the performance of our proposed method and the previous methods. The results show that our method can deliver superior performance than other methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:已经提出了多实例学习(MIL)来分类实例包。在实践中,我们可能会符合多个查看数据的问题。例如,在图像分类中,始终用于描述图像的文本信息,可以被视为两视图数据。在本文中,我们提出了一种基于新的相似性的双视图多实例学习(STMIL)方法,可以将双视图数据结合到学习中,以提高MIL的分类准确性。为了获得预测分类器,我们首先将所提出的模型转换为凸优化问题,然后提出一种新的替代框架来解决所提出的方法。然后,我们分析所提出的STMIL方法的收敛性。已经进行了实验,以比较我们提出的方法和先前方法的性能。结果表明,我们的方法可以提供比其他方法的卓越性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号