首页> 外文OA文献 >Online Visual Tracking of Weighted Multiple Instance Learning via Neutrosophic Similarity-Based Objectness Estimation
【2h】

Online Visual Tracking of Weighted Multiple Instance Learning via Neutrosophic Similarity-Based Objectness Estimation

机译:通过中性学相似性的对象估计在线视觉跟踪加权多实例学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An online neutrosophic similarity-based objectness tracking with a weighted multiple instance learning algorithm (NeutWMIL) is proposed. Each training sample is extracted surrounding the object location, and the distribution of these samples is symmetric. To provide a more robust weight for each sample in the positive bag, the asymmetry of the importance of the samples is considered. The neutrosophic similarity-based objectness estimation with object properties (super straddling) is applied. The neutrosophic theory is a new branch of philosophy for dealing with incomplete, indeterminate, and inconsistent information. By considering the surrounding information of the object, a single valued neutrosophic set (SVNS)-based segmentation parameter selection method is proposed, to produce a well-built set of superpixels which can better explain the object area at each frame. Then, the intersection and shape-distance criteria are proposed for weighting each superpixel in the SVNS domain, mainly via three membership functions, T (truth), I (indeterminacy), and F (falsity), for each criterion. After filtering out the superpixels with low response, the newly defined neutrosophic weights are utilized for weighting each sample. Furthermore, the objectness estimation information is also applied for estimating and alleviating the problem of tracking drift. Experimental results on challenging benchmark video sequences reveal the superior performance of our algorithm when confronting appearance changes and background clutters.
机译:用加权多示例学习算法(NeutWMIL)在线智基于相似性的对象性跟踪算法。每个训练样本被提取围绕所述对象的位置,和这些样品的分布是对称的。以提供用于在正袋每个样品更健壮的重量,的样品的重要性不对称性考虑。显示对象属性(超级跨界)中智基于相似性的对象性估计被应用。中智理论是哲学的用于处理不完整的,不确定的,和不一致的信息一个新的分支。通过考虑对象的周围的信息,一个单值智集合(SVNS)基分割参数选择方法,提出了以产生良好的内置集合的超像素可以更好地解释在每个帧中的对象区域。然后,交叉和形状距离标准提出了在SVNS域加权每个超像素,主要通过三个隶属函数,T(真理),I(不确定性),和F(假),对于每一个标准。滤除具有低响应的超像素后,将新定义的智权重被用于加权每个样品。此外,对象性估计信息也被施加用于估计和减轻跟踪漂移的问题。面对外观变化和背景杂波当富有挑战性的基准视频序列的实验结果表明我们的算法的性能优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号