首页> 外文期刊>Knowledge-Based Systems >Evolving interval-based representation for multiple classifier fusion
【24h】

Evolving interval-based representation for multiple classifier fusion

机译:多分类器融合的基于间隔的表示

获取原文
获取原文并翻译 | 示例

摘要

Designing an ensemble of classifiers is one of the popular research topics in machine learning since it can give better results than using each constituent member. Furthermore, the performance of ensemble can be improved using selection or adaptation. In the former, the optimal set of base classifiers, meta-classifier, original features, or meta-data is selected to obtain a better ensemble than using the entire classifiers and features. In the latter, the base classifiers or combining algorithms working on the outputs of the base classifiers are made to adapt to a particular problem. The adaptation here means that the parameters of these algorithms are trained to be optimal for each problem. In this study, we propose a novel evolving combining algorithm using the adaptation approach for the ensemble systems. Instead of using numerical value when computing the representation for each class, we propose to use the interval-based representation for the class. The optimal value of the representation is found through Particle Swarm Optimization. During classification, a test instance is assigned to the class with the interval-based representation that is closest to the base classifiers' prediction. Experiments conducted on a number of popular dataset confirmed that the proposed method is better than the well-known ensemble systems using Decision Template and Sum Rule as combiner, L2-loss Linear Support Vector Machine, Multiple Layer Neural Network, and the ensemble selection methods based on GA-Meta-data, META-DES, and ACO. (C) 2020 Elsevier B.V. All rights reserved.
机译:设计分类器的集合是机器学习中的流行研究主题之一,因为它可以提供比使用每个组成成员更好的结果。此外,可以使用选择或适应来改善集合的性能。在前者中,选择最佳的基本分类器,元分类器,原始功能或元数据集以获得比使用整个分类器和功能更好的合奏。在后者中,对基础分类器的输出工作的基础分类器或组合算法适应特定问题。这里的适配意味着这些算法的参数训练为每个问题是最佳的。在本研究中,我们提出了一种利用集合系统的适应方法的新颖组合组合算法。我们建议使用类别的基于间隔的表示,而不是在计算每个类的表示时使用数值。通过粒子群优化找到表示的最佳值。在分类期间,使用最接近基本分类器预测的基于间隔的表示分配给类。在许多流行的数据集上进行的实验证实,所提出的方法优于使用判定模板和总规则作为组合器,L2损耗线性支持向量机,多层神经网络和基于集合选择方法的众所周知的集合系统在GA-Meta-Data,Meta-des和Aco上。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号