首页> 外文期刊>Knowledge-Based Systems >Multiview learning with variational mixtures of Gaussian processes
【24h】

Multiview learning with variational mixtures of Gaussian processes

机译:高斯过程变分混合物的多视图学习

获取原文
获取原文并翻译 | 示例

摘要

Gaussian processes (GPs) are powerful Bayesian nonparametric tools widely used in probabilistic modeling, and the mixture of GPs (MGPs) were introduced afterwards to make data modeling more flexible. However, MGPs are not directly applicable to multiview learning. In order to improve the modeling ability of MGPs, in this paper, we propose a new framework of multiview learning for the MGPs and instantiate it for classification. We make the divergence between views as small as possible while ensuring that the posterior probability of each view is as large as possible. Specifically, we regularize the posterior distribution of latent variables with the consistency of posterior distributions of the latent functions between different views. Since it is intractable to solve the model analytically, the variational inference and optimization algorithms of the classification model are also presented in this paper. Experimental results on multiple real-world datasets have shown that the proposed method has outperformed the original MGP model and several state-of-the-art multiview learning methods, which indicate the effectiveness of the proposed multiview learning framework for MGPs. (C) 2020 Elsevier B.V. All rights reserved.
机译:高斯工艺(GPS)是强大的贝叶斯非参数工具,广泛用于概率建模,并之后介绍了GPS(MGPS)的混合物,以使数据建模更加灵活。但是,MGPS不可直接适用于多视图学习。为了提高MGP的建模能力,在本文中,我们为MGP提出了一种新的多视图学习框架,并将其实例化以进行分类。我们尽可能小的视图之间发散,同时确保每个视图的后验概率尽可能大。具体而言,我们将潜在变量的后部分布规则地,在不同视图之间的潜在函数的后分布一致性。由于分析地解决模型是棘手的,因此本文还提出了分类模型的变分推理和优化算法。多次现实数据集的实验结果表明,该方法已经表现出原始MGP模型和几种最先进的多视野学习方法,这表明了所提出的MGPS的多视图学习框架的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号