首页> 外文期刊>Knowledge-Based Systems >Weakly supervised learning for image keypoint matching using graph convolutional networks
【24h】

Weakly supervised learning for image keypoint matching using graph convolutional networks

机译:使用Graph卷积网络匹配图像关键点匹配的弱监督

获取原文
获取原文并翻译 | 示例

摘要

Matching between two sets of features from a pair of images is a fundamental and critical step in most computer vision tasks. Existing attempts typically establish a set of putative correspondences with the nearest-neighbor rule in feature spaces and then try to find a subset of reliable matches. However, when there are large camera angles, repetitive structures, and illumination changes existing in the two images of the same scene, recently proposed feature matching approaches do not work well to find good correspondences, especially with a higher proportion of false-positive matches in the putative set. To address these problems, we propose a novel weakly supervised Graph Convolutional Siamese Network Matcher, called GCSNMatcher, to learn the correct correspondences for image feature matching. In particular, GCSNMatcher can directly work on unstructured keypoint sets and further exploit geometric information among sparse interest points by constructing dynamic neighborhood graph structures to enhance the ability of the feature representation of each keypoint. With channelwised symmetric aggregation operations in our graph convolutional neural networks, the performance of our matcher does not vary under different permutations of unordered keypoint sets. Empirical studies on Yahoo's YFCC100M benchmark dataset demonstrate that our matcher can give a more robust performance for image matching tasks than those state-of-the-art methods, even when it is trained on small datasets. (C) 2020 Elsevier B.V. All rights reserved.
机译:来自一对图像的两组特征之间的匹配是大多数计算机视觉任务中的基本和关键步骤。现有尝试通常在特征空间中与最近邻居规则建立一组推定对应关系,然后尝试找到可靠匹配的子集。然而,当存在大的相机角度,重复的结构和在同一场景的两个图像中存在的照明变化时,最近提出的特征匹配方法无法正常工作以找到良好的对应关系,尤其是误报匹配的比例更高推定的集合。为了解决这些问题,我们提出了一种新颖的弱监管图表卷积暹罗网络匹配,称为GCSnMatcher,以了解图像特征匹配的正确对应关系。特别地,GCSNMatcher可以通过构造动态邻域图结构来直接在非结构化的关键点集上并进一步利用稀疏兴趣点之间的几何信息,以增强每个关键点的特征表示的能力。在我们的图形卷积神经网络中具有ChannelWised对称聚合操作,我们的匹配器的性能在无序键盘集的不同释放下不会变化。雅虎的YFCC100M基准数据集的实证研究表明,我们的匹配可以为图像匹配任务提供比那些最先进的方法更强大的性能,即使它在小型数据集上培训时也是如此。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第7期|105871.1-105871.13|共13页
  • 作者单位

    Macquarie Univ Fac Sci & Engn Dept Comp Sydney NSW 2109 Australia;

    Univ Technol Sydney Sch Elect & Data Engn Sydney NSW 2007 Australia;

    Macquarie Univ Fac Sci & Engn Dept Comp Sydney NSW 2109 Australia|Macau Univ Sci & Technol Fac Informat Technol Ave Wai Long Taipa 999078 Macao Peoples R China;

    Jilin Univ Sch Artificial Intelligence Qianjin St 2699 Changchun Jilin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature matching; Keypoints; Mismatch removal; Deep neural networks;

    机译:特征匹配;关键点;不匹配删除;深神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号