首页> 外文期刊>Knowledge-Based Systems >New architecture of deep recursive convolution networks for super-resolution
【24h】

New architecture of deep recursive convolution networks for super-resolution

机译:超级分辨率深递归卷积网络的新架构

获取原文
获取原文并翻译 | 示例

摘要

More existing methods of single image super-resolution (SR) often direct super-resolving the details, but when the upsampling factor is larger, it is challenging to reconstruct high-frequency details. Lately, deep convolution neural networks have made significant progress with regard to SR. However, with an increase in networks width and depth, the information used for reconstruction is becoming increasingly weaker, and the training of neural networks is becoming more difficult. This paper proposes a novel architecture of a deep recursive convolution neural networks used to reconstruct a high-resolution image from an original low-resolution (LR) image in a step-by-step manner. The architecture consists of three parts: an embedding network, cascaded fine extraction blocks, and reconstruction networks. Concretely, a wide convolution is used to extract more features from the original LR images, cascaded fine extraction blocks are employed to extract more useful information through a step-by-step approach and remove redundant information, and a deconvolution operation is utilized to restore the features. The proposed networks adopt a residual-feature learning scheme, and the Caffe framework is chosen for training the networks. The experimental results show that the proposed method exhibits a superior performance compared with various other state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:更多现有的单图像超分辨率(SR)方法经常直接解析细节,但是当上采样因子较大时,重建高频细节是具有挑战性的。最近,深度卷积神经网络在SR方面取得了重大进展。然而,随着网络宽度和深度的增加,用于重建的信息越来越弱,神经网络的训练变得更加困难。本文提出了一种新的又递归卷积神经网络的新架构,用于以逐步的方式重建从原始低分辨率(LR)图像的高分辨率图像。该架构由三部分组成:嵌入式网络,级联的精细提取块和重建网络。具体地,使用宽卷积来从原始LR图像中提取更多特征,采用级联的精细提取块来通过逐步接近提取更多有用的信息并去除冗余信息,并且使用解卷积操作来恢复特征。建议的网络采用剩余特征学习方案,选择Caffe框架用于培训网络。实验结果表明,与各种最先进的方法相比,该方法表现出优异的性能。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号