首页> 外文期刊>Knowledge-Based Systems >New architecture of deep recursive convolution networks for super-resolution
【24h】

New architecture of deep recursive convolution networks for super-resolution

机译:用于超分辨率的深度递归卷积网络的新架构

获取原文
获取原文并翻译 | 示例

摘要

More existing methods of single image super-resolution (SR) often direct super-resolving the details, but when the upsampling factor is larger, it is challenging to reconstruct high-frequency details. Lately, deep convolution neural networks have made significant progress with regard to SR. However, with an increase in networks width and depth, the information used for reconstruction is becoming increasingly weaker, and the training of neural networks is becoming more difficult. This paper proposes a novel architecture of a deep recursive convolution neural networks used to reconstruct a high-resolution image from an original low-resolution (LR) image in a step-by-step manner. The architecture consists of three parts: an embedding network, cascaded fine extraction blocks, and reconstruction networks. Concretely, a wide convolution is used to extract more features from the original LR images, cascaded fine extraction blocks are employed to extract more useful information through a step-by-step approach and remove redundant information, and a deconvolution operation is utilized to restore the features. The proposed networks adopt a residual-feature learning scheme, and the Caffe framework is chosen for training the networks. The experimental results show that the proposed method exhibits a superior performance compared with various other state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:现有的更多的单图像超分辨率(SR)方法通常直接指导细节的超分辨,但是当上采样因子较大时,重构高频细节将面临挑战。最近,深度卷积神经网络在SR方面取得了重大进展。然而,随着网络宽度和深度的增加,用于重建的信息变得越来越弱,并且神经网络的训练变得越来越困难。本文提出了一种深度递归卷积神经网络的新颖体系结构,该结构用于逐步地从原始的低分辨率(LR)图像中重建高分辨率图像。该体系结构由三部分组成:嵌入网络,级联精细提取模块和重建网络。具体而言,广泛的卷积用于从原始LR图像中提取更多特征,级联的精细提取块用于通过逐步方法来提取更多有用的信息并去除多余的信息,并且通过去卷积操作来恢复原始特征。所提出的网络采用残差特征学习方案,并且选择Caffe框架来训练网络。实验结果表明,与其他各种现有技术相比,该方法具有更好的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号