首页> 外文期刊>Knowledge-Based Systems >A framework for semi-supervised metric transfer learning on manifolds
【24h】

A framework for semi-supervised metric transfer learning on manifolds

机译:歧管上半监控度量传递学习的框架

获取原文
获取原文并翻译 | 示例

摘要

A common assumption of statistical learning theory is that the training and testing data are drawn from the same distribution. However, in many real-world applications, this assumption does not hold true. Hence, a realistic strategy, Cross Domain Adaptation (DA) or Transfer Learning (TA), can be used to employ previously labelled source domain data to boost the task in the new target domain. Previously, Cross Domain Adaptation methods have been focused on re-weighting the instances or aligning the cross-domain distributions. However, these methods have two significant challenges: (1) There is no proper consideration of the unlabelled data of target task as in the real-world, an abundant amount of unlabelled data is available, (2) The use of normal Euclidean distance function fails to capture the appropriate similarity or dissimilarity between samples. To deal with this issue, we have proposed a Semi-Supervised Metric Transfer Learning framework called SSMT that reduces the distribution between domains both statistically and geometrically by learning the instance weights, while a regularized distance metric is learned to minimize the within-class co-variance and maximize the between-class co-variance simultaneously for the target domain. Compared with the previous works where Mahalanobis distance metric and instance weights are learned by using the labelled data or in a pipelined framework that leads to a decrease in the performance, our proposed SSMT attempts to learn a regularized distance metric and instance weights by considering unlabelled data in a parallel framework. Experimental evaluation on three cross-domain visual data sets, e.g., PIE Face, Handwriting Digit Recognition on MNIST-USPS and Object Recognition, demonstrates the effectiveness of our designed approach on facilitating the unlabelled target task learning, compared to current state-of-the-art domain adaptation approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:统计学习理论的共同假设是培训和测试数据来自相同的分布。但是,在许多现实世界的应用中,这种假设并没有保持真实。因此,可以使用现实的策略,跨域适应(DA)或传输学习(TA)来使用先前标记的源域数据来提升新目标域中的任务。以前,跨域自适应方法已经集中在重新加权实例或对准跨域分布。然而,这些方法有两个重大挑战:(1)没有正确考虑到现实世界中的目标任务的未标记数据,可以使用丰富的未标记数据,(2)使用正常的欧几里德距离功能未能捕获样品之间的适当相似性或不相似性。要处理此问题,我们提出了一个名为SSMT的半监督的公制传输学习框架,它通过学习实例权重来减少统计和几何和几何上的域之间的分布,而学会了正则化距离度量来最小化课程内部的共同方差并最大化目标域同时同时进行类共差。与以前的作品相比,通过使用标记的数据或流水线框架学习Mahalanobis距离度量和实例权重,导致性能降低,我们提出的SSMT通过考虑未标记的数据来学习正规化距离度量和实例权重在一个平行的框架中。三个跨域视觉数据集的实验评估,例如饼图,手写数字识别Mnist-USPS和物体识别,展示了我们设计方法对促进未标记的目标任务学习的有效性,与当前的状态相比 - 域适应方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号