首页> 外文期刊>Knowledge-Based Systems >A framework for semi-supervised metric transfer learning on manifolds
【24h】

A framework for semi-supervised metric transfer learning on manifolds

机译:流形上的半监督度量转移学习框架

获取原文
获取原文并翻译 | 示例

摘要

A common assumption of statistical learning theory is that the training and testing data are drawn from the same distribution. However, in many real-world applications, this assumption does not hold true. Hence, a realistic strategy, Cross Domain Adaptation (DA) or Transfer Learning (TA), can be used to employ previously labelled source domain data to boost the task in the new target domain. Previously, Cross Domain Adaptation methods have been focused on re-weighting the instances or aligning the cross-domain distributions. However, these methods have two significant challenges: (1) There is no proper consideration of the unlabelled data of target task as in the real-world, an abundant amount of unlabelled data is available, (2) The use of normal Euclidean distance function fails to capture the appropriate similarity or dissimilarity between samples. To deal with this issue, we have proposed a Semi-Supervised Metric Transfer Learning framework called SSMT that reduces the distribution between domains both statistically and geometrically by learning the instance weights, while a regularized distance metric is learned to minimize the within-class co-variance and maximize the between-class co-variance simultaneously for the target domain. Compared with the previous works where Mahalanobis distance metric and instance weights are learned by using the labelled data or in a pipelined framework that leads to a decrease in the performance, our proposed SSMT attempts to learn a regularized distance metric and instance weights by considering unlabelled data in a parallel framework. Experimental evaluation on three cross-domain visual data sets, e.g., PIE Face, Handwriting Digit Recognition on MNIST-USPS and Object Recognition, demonstrates the effectiveness of our designed approach on facilitating the unlabelled target task learning, compared to current state-of-the-art domain adaptation approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:统计学习理论的一个常见假设是,训练和测试数据来自同一分布。但是,在许多实际应用中,这种假设并不成立。因此,可以使用跨域自适应(DA)或转移学习(TA)的现实策略来采用先前标记的源域数据来增强新目标域中的任务。以前,跨域适应方法一直专注于对实例重新加权或对齐跨域分布。但是,这些方法面临两个重大挑战:(1)像现实世界一样,没有适当考虑目标任务的未标记数据,可用大量未标记数据;(2)使用正常的欧几里得距离函数无法捕获样本之间适当的相似性或差异性。为了解决这个问题,我们提出了一种称为SSMT的半监督度量标准转移学习框架,该框架通过学习实例权重来减少统计和几何上域之间的分布,同时学习了规则化距离度量以最大程度地减少类内共方差并同时为目标域最大化类间协方差。与以前的工作相比,以前的工作通过使用标记的数据或在导致性能降低的流水线框架中学习了Mahalanobis距离度量和实例权重,我们建议的SSMT尝试通过考虑未标记的数据来学习规则化的距离度量和实例权重在并行框架中。对三个跨域可视数据集(例如PIE脸部,MNIST-USPS上的手写数字识别和对象识别)的实验评估表明,与当前的现状相比,我们设计的方法在促进未标记目标任务学习方面的有效性领域适应方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号