首页> 外文期刊>Knowledge-Based Systems >Optimizing Deep Belief Echo State Network with a Sensitivity Analysis Input Scaling Auto-Encoder algorithm
【24h】

Optimizing Deep Belief Echo State Network with a Sensitivity Analysis Input Scaling Auto-Encoder algorithm

机译:灵敏度分析输入缩放自动编码器算法优化深信度回声状态网络

获取原文
获取原文并翻译 | 示例

摘要

Echo State Network (ESN) is a specific class of recurrent neural networks, which displays very rich dynamics owing to its reservoir based hidden neurons. ESN has been viewed as a powerful approach to model real-valued time series processes. In order to integrate with deep learning theory, Deep Belief Echo State Network (DBESN) is employed to address the slow convergence in Deep Belief Network (DBN). In DBESN, the DBN part is employed for feature learning in an unsupervised fashion and the ESN part is utilized as a regression layer of DBN. However, the ESN input layer is still not working in an unsupervised status in DBESN. Moreover, ESN's input dimension increases dramatically because of the DBN layer in DBESN. Namely, the DBN layer in DBESN makes the ESN more difficult to construct the input scaling parameters. For purpose of constructing an optimal input weights matrix and input scaling parameters in the ESN layer of DBESN, a novel Sensitivity Analysis Input Scaling Auto-Encoder (SAIS-AE) algorithm is employed in this paper through an unsupervised pre-training process. Initially, the output weights matrix of ESN layer is pre-trained by total input data set. Then, the pretrained output weights matrix is injected into the input weights matrix of the ESN layer to ensure the specificity of AE. Finally, the input scaling parameters of ESN layer are tuned based on a sensitivity analysis algorithm. Two multivariable sequence tasks and one univariate sequence benchmark are applied to demonstrate the advantage and superiority of SAIS-AE. Extensive experimental results show that our SAIS-AE-DBESN model can effectively improve the performance of DBESN. (C) 2019 Elsevier B.V. All rights reserved.
机译:回声状态网络(ESN)是一类特定的循环神经网络,由于其基于存储库的隐藏神经元而显示出非常丰富的动态。 ESN被认为是对实值时间序列过程进行建模的强大方法。为了与深度学习理论整合,深度信仰回声状态网络(DBESN)被用来解决深度信仰网络(DBN)中的缓慢收敛问题。在DBESN中,DBN部分以无监督的方式用于特征学习,而ESN部分则用作DBN的回归层。但是,ESN输入层在DBESN中仍处于非监督状态。此外,由于DBESN中的DBN层,ESN的输入维度急剧增加。即,DBESN中的DBN层使ESN难以构造输入缩放参数。为了在DBESN的ESN层中构造最佳输入权重矩阵和输入缩放参数,本文通过无监督的预训练过程,采用了一种新颖的灵敏度分析输入缩放自动编码器(SAIS-AE)算法。最初,ESN层的输出权重矩阵由总输入数据集预训练。然后,将预训练的输出权重矩阵注入到ESN层的输入权重矩阵中,以确保AE的特异性。最后,基于灵敏度分析算法对ESN层的输入缩放参数进行了调整。应用两个多变量序列任务和一个单变量序列基准来证明SAIS-AE的优势和优越性。大量的实验结果表明,我们的SAIS-AE-DBESN模型可以有效地提高DBESN的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号