首页> 外文期刊>Future generation computer systems >Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms
【24h】

Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms

机译:Fuzzy-Taylor-Elephant Herd优化启发了DDOS攻击检测的深度信仰网络,与最先进的算法比较

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing environment support resource sharing as cloud service over the internet. It enables the users to outsource data into the cloud server that can be accessed remotely from various devices distributed geographically. Accessing resources from the cloud causes various security issues as the attackers try to illegally access the data. The distributed denial of service (DDoS) attack is one of the security concern in the cloud server. DDoS is a kind of cyber attack which disrupt normal traffic of targeted cloud server (or any other servers). In this paper, we propose an effective fuzzy and taylor-elephant herd optimization (FT-EHO) inspired by deep belief network (DBN) classifier for detecting the DDoS attack. FT-EHO uses taylor series and elephant heard optimization algorithm along with a fuzzy classifier for rules learning. The performance of the proposed FT-EHO is evaluated through rigorous computer simulations. Three standard benchmark databases, namely, KDD cup, databasel and database2 are used during simulations. Four quality measures such as accuracy, detection accuracy, precision and recall are considered as a performance metrics. FT-EHO's performance is compared against the state-of-the-art methods considering the evaluation metrics. Results reveals that the proposed FT-EHO showed significantly higher value of evaluation metrics (accuracy (93.811%), detection rate (97.200%), precision (94.981%) and recall (93.833%)) as compared to other methods.
机译:云计算环境支持Internet上作为云服务的资源共享。它使用户能够将数据外包到云服务器中,该云服务器可以从地理位置分布的各种设备远程访问。访问云中的资源导致各种安全问题,因为攻击者试图非法访问数据。分布式拒绝服务(DDOS)攻击是云服务器中的安全问题之一。 DDOS是一种网络攻击,可破坏目标云服务器(或任何其他服务器)的正常流量。在本文中,我们提出了一种有效的模糊和泰勒 - 大象群优化(FT-EHO),其灵感来自深度信仰网络(DBN)分类器,用于检测DDOS攻击。 FT-EHO使用泰勒系列和大象听到优化算法以及用于规则学习的模糊分类器。通过严格的计算机模拟评估所提出的FT-EHO的性能。在仿真期间使用三个标准基准数据库,即KDD Cup,Databasel和Database2。四种质量措施,如准确性,检测准确性,精度和召回被视为性能指标。考虑评估指标,将FT-EHO的性能与最先进的方法进行比较。结果表明,与其他方法相比,所提出的FT-EHO显示出明显较高的评估度量值(准确性(93.811%),检测率(97.200%),精度(94.981%),召回(93.83%))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号